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The case for increasing the level of autonomy and
automation for space exploration is well known. Strin-
gent communications constraints are present, includ-

ing limited communication windows, long communication
latencies, and limited bandwidth. Additionally, limited
access and availability of operators, limited crew availability,
system complexity, and many other factors often preclude
direct human oversight of many functions. In fact, it can be
said that almost all spacecraft require some level of autono-
my, if only as a backup when communications with humans
are not available or fail for some reason.

Increasing the levels of autonomy and automation using
techniques from artificial intelligence allows for a wider vari-
ety of space missions and also frees humans to focus on tasks
for which they are better suited. In some cases autonomy and
automation are critical to the success of the mission. For
example, deep space exploration may require more autono-
my in the spacecraft, as communication with ground opera-
tors is sufficiently infrequent to preclude continuous human
monitoring for potentially hazardous situations.

Space applications of AI can also be divided in terms of
three kinds of operations they support: predictable, unpre-
dictable, and real time (Jónsson et al. 2007). Even predictable
operations can be extremely complex — enabling artificial
intelligence to play a key role in automation to manage com-
plexity or to assist human decision making. Unpredictability
of the operating environment increases requirements on the
AI system to appropriately respond in a wide range of situa-
tions. Real-time requirements may impose limitations on the
amount of reasoning performed by the AI system.

Editorial Introduction

Space Applications of 
Artificial Intelligence

Steve Chien, Robert Morris

n We are pleased to introduce the space
application issue articles in this issue of
AI Magazine. The exploration of space
is a testament to human curiosity and
the desire to understand the universe
that we inhabit. As many space agen-
cies around the world design and deploy
missions, it is apparent that there is a
need for intelligent, exploring systems
that can make decisions on their own in
remote, potentially hostile environ-
ments. At the same time, the monetary
cost of operating missions, combined
with the growing complexity of the
instruments and vehicles being
deployed, make it apparent that sub-
stantial improvements can be made by
the judicious use of automation in mis-
sion operations.
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Of course, deploying large numbers of integrated
intelligent agents, each utilizing multiple AI tech-
nologies, is the end vision of space AI technologists.
The first major step toward this vision was the remote
agent experiment (RAX) (Muscettola et al. 1998,
Bernard et al. 2000). RAX controlled the Deep Space
1 spacecraft for two periods totaling approximately
48 hours in 1999. RAX included three AI technolo-
gies: a deliberative, batch planner-scheduler, a robust
task executive, and a model-based mode identifica-
tion and reconfiguration system. 

More recently, the autonomous sciencecraft has
controlled the Earth Observing-1 mission for almost
10 years as this article goes to press. This run of oper-
ations includes more than 50,000 images acquired
and hundreds of thousands of operations goals. The
autonomous sciencecraft (Chien et al. 2005a)
includes three types of AI technologies: a model-
based, deliberative, continuous planner-scheduler
(Tran et al. 2004, Rabideau et al. 2004), a robust task
executive, and onboard instrument data interpreta-
tion including support vector machine-learning
derived classifiers (Castano et al. 2006, Mandrake et
al. 2012) and sophisticated instrument data analysis
(see figure 1) (Thompson et al. 2013b). 

Many individual AI technologies have also found
their way into operational use. Flight operations such
as science observation activities, navigation, and
communication must be planned well in advance.
AI-based automated planning has found a natural
role to manage these highly constrained, complex
operations. Early successes in this area include the
ground processing scheduling system (Deale et al.

1994) for NASA space shuttle refurbishment and the
SPIKE system used to schedule Hubble Space Tele-
scope operations (Johnston and Miller 1994). SPIKE
enabled a 30 percent increase in observation utiliza-
tion (Johnston et al. 1993) for Hubble, a major
impact for a multibillion dollar mission. Also impres-
sive is that SPIKE or components of SPIKE have been
or are being used for the FUSE, Chandra, Subaru, and
Spitzer missions. AI-based planning and scheduling
are also in use on the European Space Agency’s Mars
express and other missions. For a more complete sur-
vey of automated planning and scheduling for space
missions see Chien et al. (2012a).

In this issue, the article by Mark D. Johnston,
Daniel Tran, Belinda Arroyo, Sugi Sorensen, Peter Tay,
Butch Carruth, Adam Coffman, and Mike Wallace
describes the deep space network ( DSN ) scheduling
engine (DSE) component of a new scheduling system
that provides core automation functionality for
scheduling of NASA’s deep space network, supporting
scores of missions with hundreds of tracks every
week. The article by Russell Knight, Caroline
Chouinard, Grailing Jones, and Daniel Tran describes
the application and adaptation of the ASPEN (auto-
mated scheduling and planning environment)
framework for operations of the Orbital Express (OE)
mission.

Because space missions produce enormous petas-
cale data sets, machine learning, data analysis, and
event recognition for science and engineering pur-
poses has been another fertile area for application of
AI techniques to space applications (Fayyad, Haus-
sler, and Stolorz 1996). An early success was the use
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Abundance Map Generated Onboard EO-1 
During November 2011 Over�ight

Abundance Map Generated by Expert 
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Steamboat, NV  

Figure 1. Onboard Spectral Analysis of Imaging Spectroscopy Data During  2011–2012 Demonstrated on EO-1.

Onboard software performed spectral endmember detection and mapping, enabling automatic abundance mapping to reduce data volume
by orders of magnitude (Thompson et al 2013). These onboard automatically derived  compositional maps (at left) were consistent with
prior expert human interpretations (at right).



Articles

WINTER 2014   5

of the decision tree machine-learning techniques in
SkiCat (Fayyad, Weir, and Djorgovski 1993) to semi-
automatically classify the second Mount Palomar Sky
Survey, enabling classification of an order of magni-
tude greater sky objects than by manual means.
Another early advance was the use of Bayesian clus-
tering in the AutoclassAutoClass system (Cheeseman
and Stutz 1996) to classify infrared astronomical
satellite (IRAS) data. From these beginnings has
emerged a plethora of subsequent applications
including automatic classification and detection of
features of interest in earth (Mazzoni et al. 2007a,
2007b) and planetary (Burl et al. 1998, Wagstaff et al.
2012) remote-sensing imagery. More recently, these
techniques are also being applied to radio science sig-
nal interpretation (Thompson et al. 2013a).

In this issue the article by José Martínez Heras and
Alessandro Donati studies the problem of telemetry
monitoring and describes a system for anomaly
detection that has been deployed on several Euro-
pean Space Agency (ESA) missions.

Surface missions, such as Mars Pathfinder, Mars
Exploration Rovers (MER), and the Mars Science Lab-
oratory (MSL), also present a unique opportunity and
challenge for AI. The MER mission uses several AI-
related systems: The MAPGEN (Ai-Chang et al. 2004,
Bresina et al. 2005) constraint-based planning system
for tactical activity planning, the WATCH (Castano
et al. 2008) system (used operationally to search for
dust devil activity and to summarize information on
clouds on Mars.), and the AEGIS system (Estlin et al.
2012) (used for end-of-sol targeted remote sensing to
enhance MER science).

Many rover operations, such as long- and short-
range traverse on a remote surface; sensing;
approaching an object of interest to place tools in
contact with it; drilling, coring, sampling, assem-
bling structures in space, are characterized by a high
degree of uncertainty resulting from the interaction
with an environment that is at best only partially
known. These factors present unique challenges to AI
systems. 

In this issue, the article by David Wettergreen,
Greydon Foil, Michael Furlong, and David R. Thomp-
son addresses the use of onboard rover autonomy to
improve the quality of the science data returned
through better sample selection, data validation, and
data reduction.

Another challenge for autonomy is to scale up to
multiple assets. While in an Earth-observing context
multiple satellites are already autonomously coordi-
nated to track volcanoes, wildfires, and flooding
(Chien et al. 2005b, Chien et al. 2012b), these sys-
tems are carefully engineered and coordinate assets
in rigid, predefined patterns. In contrast, in this issue,
the article by Logan Yliniemi, Adrian K. Agogino, and
Kagan Tumer tackles the problem of multirobot coor-
dination for surface exploration through the use of
coordinated reinforcement learning: rather than

being programmed what to do, the rovers iteratively
learn through trial and error to take actions that lead
to high overall system return. 

The significant role of AI in space is documented in
three long-standing technical meetings focused on
the use of AI in space. The oldest, the International
Symposium on Artificial Intelligence, Robotics, and
Automation for Space (i-SAIRAS) covers both AI and
robotics. I-SAIRAS occurs roughly every other year
since 1990 and alternates among Asia, North Ameri-
ca, and Europe1 with 12 meetings to date. Second, the
International Workshop on Planning and Scheduling
for Space occurs roughly every other year with the
first meeting2 in 1997 with eight workshops thus far.
Finally, the IJCAI3 workshop on AI and space has
occurred at each IJCAI conference beginning in 2007
with four workshops to date.

We hope that readers will find this introduction
and special issue an intriguing sample of the incredi-
ble diversity of AI problems presented by space explo-
ration. The broad spectrum of AI techniques, includ-
ing but not limited to machine learning and data
mining, automated planning and scheduling, multi-
objective optimization, and multiagent, present
tremendously fertile ground for both AI researchers
and practitioners.

Acknowledgements
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Notes
1. See robotics.estec.esa.int/i-SAIRAS.

2. See robotics.estec.esa.int/IWPSS.

3. See ijcai.org.
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Automated Scheduling for 
NASA’s Deep Space Network

Mark D. Johnston, Daniel Tran, Belinda Arroyo, Sugi Sorensen, 
Peter Tay, Butch Carruth, Adam Coffman, Mike Wallace

NASA’s Deep Space Network (DSN) provides commu-
nications and other services for planetary explo-
ration missions as well as other missions beyond geo-

stationary orbit, supporting both NASA and international
users. It also constitutes a scientific facility in its own right,
conducting radar investigations of the moon and planets, in
addition to radio science and radio astronomy. The DSN
comprises three antenna complexes in Goldstone, Califor-
nia; Madrid, Spain; and Canberra, Australia. Each complex
contains one 70 meter antenna and several 34 meter anten-
nas (figure 1), providing S-, X-, and K-band up- and down-
link services. The distribution in longitude enables full sky
coverage and generally provides some overlap in spacecraft
visibility between the complexes. A more detailed discussion
of the DSN and its large antennas can be found in the paper
by W. A. Imbriale (2003).

The process of scheduling the DSN is complex and time-
consuming. There is significantly more demand for DSN
services than can be handled by the available assets. There
are numerous constraints on the assets and on the timing of
communications supports, due to spacecraft and ground
operations rules and preferences. Most DSN users require a

n This article describes the Deep Space Net-
work (DSN) scheduling engine (DSE) compo-
nent of a new scheduling system being
deployed for NASA’s Deep Space Network. The
DSE provides core automation functionality
for scheduling the network, including the
interpretation of scheduling requirements
expressed by users, their elaboration into
tracking passes, and the resolution of conflicts
and constraint violations. The DSE incorpo-
rates both systematic search- and repair-
based algorithms, used for different phases
and purposes in the overall system. It has
been integrated with a web application that
provides DSE functionality to all DSN users
through a standard web browser, as part of a
peer-to-peer schedule negotiation process for
the entire network. The system has been
deployed operationally and is in routine use,
and is in the process of being extended to sup-
port long-range planning and forecasting and
near real-time scheduling. 
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Figure 1. Three of the Deep Space Network 34 Meter Antennas 
at the Goldstone Deep Space Communications Complex in California.

firm schedule around which to build spacecraft com-
mand sequences, weeks to months in advance. Cur-
rently there are several distributed teams who work
with missions and other users of the DSN to deter-
mine their service needs, provide these as input to an
initial draft schedule, then iterate among themselves
and work with the users to resolve conflicts and come
up with an integrated schedule. This effort has a goal
of a conflict-free schedule by eight weeks ahead of
the present, which is frequently hard to meet in prac-
tice. In addition to asset contention, many other fac-
tors such as upcoming launches (and their slips) con-
tribute to the difficulty of building up an extended
conflict-free schedule.

There have been various past efforts to increase the
level of scheduling automation for the DSN (Bell
1993; Biefeld and Cooper 1991; Chien et al. 1997;
Fisher et al. 1998; Guillaume et al. 2007; Kan, Rosas,
and Vu 1996; Loyola 1993; Werntz, Loyola, and Zen-
dejas 1993). Currently, the DSN scheduling process is
centered on the service preparation subsystem (SPS),
which provides a central database for the real-time
schedules and for the auxiliary data needed by the

DSN to operate the antennas and communications
equipment (for example,  view periods, sequence-of-
events files). The current project to improve schedul-
ing automation is designated the service scheduling
software, or S3, which will be integrated with SPS.
There are three primary features of S3 that are expect-
ed to significantly improve the scheduling process.
(1) Automated scheduling of activities with a request-
driven approach (as contrasted with the previous
activity-oriented approach that specified individual
activities); (2) unifying the scheduling software and
databases into a single integrated suite covering real
time out through as much as several years into the
future; and (3) development of a peer-to-peer collab-
oration environment for DSN users to view, edit, and
negotiate schedule changes and conflict resolutions.

The collaboration environment is described else-
where (Carruth et al. 2010); this article focuses on the
first and second areas and some of their ramifica-
tions. (For additional information see Clement and
Johnston [2005]; Johnston and Clement [2005];
Johnston et al. [2009]; Johnston et al. [2010].) 

The request-driven paradigm shifts the emphasis
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from individual specific resource allocations to a
more abstract scheduling request specification or lan-
guage and on the scheduling algorithms that work
with this specification to generate, maintain, and
improve the schedule. In the following sections, we
first provide some background on the DSN schedul-
ing problem and on the reasons for the request-dri-
ven approach taken by S3. We then briefly describe
the scheduling request specification itself, which is
how DSN users of S3 convey their service requests to
the system. These requests are processed by the DSN
scheduling engine (DSE) to expand into tracking
passes and integrate them into an overall schedule,
all the while seeking to minimize conflicts and
request violations. We conclude with an overall sum-
mary and brief description of plans for future devel-
opment.

Overview of DSN Scheduling
The DSN antennas and supporting infrastructure are
heavily used. Characteristics of the network’s assets
and typical usage are listed in table 1. Currently the
DSN supports 37 spacecraft or service users, counting
all those with regular requirements for scheduled
time on any antenna. The mission users span a wide
range of distance and orbit type: high Earth orbit,
lunar orbit, solar orbit, probes at Mercury, Venus,
Mars, and Saturn (and en route to Jupiter and Plu-
to/Charon), and to comets and asteroids, out to the
two Voyager spacecraft in interstellar space. Ground-
based users conduct radio science and radio astrono-
my using the antennas, including coordinated pro-
grams with international partners. Other activities
that must be scheduled include routine and special
maintenance, calibration, engineering, and test
activities. The collected set of DSN users imposes a
very wide range of usage requirements on the net-
work due to differing designs and operating modes.
Some users require occasional contacts of only a few
hours per week, but this ranges up to continuous cov-
erage during certain mission phases, such as post-
launch and during critical mission events. At the
present time, a typical week includes between 400

and 500 scheduled activities on the antennas of the
three DSN complexes; a portion of such a schedule is
shown in figure 2 in the S3 web GUI.

Phases of the DSN Scheduling Process
The DSN scheduling process consists of three phases,
which do not have sharply defined boundaries.
Below we describe these phases as they exist today;
later in this article we discuss plans for how they may
change in the future.

Long-Range Planning and Forecasting
In today’s system, long-range planning is based on
user-provided high-level requirements, specified in
the form of a spreadsheet that is interpreted by ana-
lysts and entered into a database at JPL. The forecast
software employs a statistical allocation method
(Lacey and Morris 2002) to estimate when these
requirements translate into DSN loading over various
time frames. Long-range planning has several major
purposes: studies and analyses, down time analysis,
and future mission analysis. 

For planning studies and analyses, periods of par-
ticular interest or concern are examined to determine
where there is likely contention among missions, for
example around launches or critical mission events
(maneuvers, planetary orbit insertion or landings), or
when construction of a new DSN antenna is under
investigation. Down time analysis involves identify-
ing periods of time when necessary antenna or other
maintenance can be scheduled, attempting to mini-
mize the impact on missions. For future mission
analysis, missions can, in proposal phase, request
analysis of their proposed DSN coverage as part of
assessing and costing proposals for new missions. The
time range for long-range planning is generally six
months or more into the future, sometimes as much
as years.

Midrange Scheduling
The midrange scheduling phase is when detailed user
requirements are specified, integrated, negotiated,
and all tracking activities finalized in the schedule.
Starting at roughly 4–5 months before execution,
users specify their detailed scheduling requirements

Table 1. Some Characteristics of the DSN Scheduling Problem.

Typical number of tracking passes per week 425 
Number of users (missions, science users, and 
maintenance) 

37 

Typical pass duration 5.25 hours 

Assets 12 antennas at 3 sites (to be augmented to 16 by 2020) 

Asset loading ~80–95 percent 

Scheduling time scale Preview schedule 17–26 weeks ahead 

Con�ict free 8 weeks ahead 



on a rolling weekly basis. These requirements include
tracking time and services required, constraining
time intervals and relationships (for example, mini-
mum and maximum gaps), visibility constraints, and
flexibilities. Further discussion of the nature of these
requirements and flexibilities is included in the DSN
Scheduling Requests section.

Once the deadline passes and all requirements are
in, the full set is integrated into an initial schedule in
which conflicts are reduced by taking advantage of
whatever flexibilities have been specified. This ver-
sion of the schedule is extremely heavily overloaded,
but it does indicate where there are contentious time
periods. These contentious areas shift from week to
week depending on critical activities, as well as on
the slow drift of visibility intervals with time. 

There follows an optimization step where an expe-
rienced DSN scheduler interactively edits the sched-
ule and further reduces conflicts by taking advantage
of unspecified flexibilities and making further adjust-
ments. At the conclusion of this phase, the schedule
usually contains fewer than 30 conflicting sets of

activities. It is then released to the scheduling user
community who negotiate to reduce conflicts and
further optimize coverage for their missions. 

It is important to note that, unlike many other
scheduling domains, the DSN follows a collaborative
approach to developing the conflict-free schedule.
DSN users follow a peer-to-peer approach to resolv-
ing conflicts. Users create change proposals, which
are suggestions as to how different sets of users could
modify their tracking passes to resolve conflicts. The
affected users can concur or reject these suggestions
and counter with suggestions of their own. Over the
course of a few weeks, convergence is reached and
the schedule reaches a negotiated conflict-free status.
Should users not come to agreement among them-
selves, there is an escalation process to adjudicate
irreconcilable conflicts; escalation very rarely occurs
in practice. When negotiation concludes, the sched-
ule is conflict free or has only a few waived conflicts
for specific reasons. This is considered the negotiat-
ed schedule that missions use to plan their integrat-
ed ground and spacecraft activities, including the
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Figure 2. Example of an HTML5 Canvas View of a Portion of the DSN Schedule. 

Mousing over a track brings up a transient window with detailed information about the activity (lower right). In this view, different mis-
sions are color coded, and setup/teardown is indicated by the black segments at the top left and right of each activity. Each time line rep-
resents one of the DSN antennas.
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development of on-board command loads based in
part on the DSN schedule.

Following this point, changes to the schedule may
still occur, but new conflicts may not be introduced
(by policy). There is a continuing low level of no-
impact changes and negotiated changes that occur
all the way down to real time.

Near Real-Time Scheduling
The near real-time phase of DSN scheduling starts
roughly 2–3 weeks from execution and includes the
period through execution of all the scheduled activi-
ties. Late changes may occur for various reasons
(sometimes affecting the midrange phase as well). For
example,  users may have additional information or
late changes to requirements for a variety of reasons;
DSN assets (antennas, equipment) may experience
unexpected down times that require adjustments to
the schedule to accommodate; or spacecraft emer-
gencies may occur that require extra tracking or
changes to existing scheduled activities. For many
missions that are sequenced well in advance, late
changes cannot be readily accommodated.

DSN Scheduling Requests
DSN users represent their needs to the S3 software sys-
tem as scheduling requests. Each such request is
interpreted by the DSN scheduling engine. The main
elements of a scheduling request are service specifi-
cation, timing constraints, track relationships, prior-
ity, preferences, repetitions, and nonlocal time line
constraints.

Service Specification
S3, through the DSE, provides an abstraction level on
top of DSN asset specifications that may be refer-
enced by users much more simply than specifying all
of the possible options. At the physical level, the
spacecraft on-board electronics (frequency band, data
rates, encoding), radiated power, distance, along with
the DSN antennas, receivers and transmitters, and
other equipment, determine what space and ground
configurations are feasible. The abstraction level pro-
vided in S3 is called a service alias such that a single
service alias encapsulates a wide range of options,
preferences, and associated information that is
required to schedule the network. For example, some
users need the added sensitivity of more than one
antenna at a time and so must be scheduled as anten-
nas arrays using two or more antennas at once (as
many as four at a time). For navigation data, there are
special ranging scenarios that alternate the received
signal between the spacecraft and a nearby quasar,
over a baseline that extends over multiple DSN com-
plexes. For Mars missions, there is a capability for a
single antenna to communicate with several space-
craft at once (called multiple spacecraft per antenna,
or MSPA); while more than one at a time may be
sending data to Earth, only one at a time may be
receiving data sent from Earth.

A more detailed description of service alias func-
tionality is provided in the description of the DSN
scheduling engine that follows.

Timing Constraints
Users need a certain amount of communications
contact time in order to download data and upload
new command loads, and for obtaining navigation
data. How this time is to be allocated is subject to
many options, including whether it must be all in
one interval or can be spread over several, and
whether and how it is related to external events and
to spacecraft visibility. Among the factors that can be
specified in a schedule request are reducible (whether
and how much the requested time can be reduced,
for example to resolve conflicts); extendable
(whether and how much the request time can be
extended, should the option exist); splittable
(whether the time must be provided in one unbro-
ken track, or can be split into two or more separate
tracks); split duration (if splittable, the minimum,
maximum, and preferred durations of the split seg-
ments; the maximum number of split segments);
split segment overlap (if the split segments must
overlap each other, the minimum, maximum, and
preferred duration of the overlaps); split segment
gaps (if the split segments must be separated, the
minimum, maximum, and preferred duration of the
gaps); quantization (whether scheduled activity
times are to occur on 1-minute or 5-minute bound-
aries); view periods (periods of visibility of a space-
craft from a ground station, possibly constrained to
special limits, rise/set, other elevation limits, and
possibly padded at the boundaries); and events,
which are general time intervals that constrain when
tracks may be allocated.  Event examples include day
of week, time of day (for accommodating shift sched-
ules, daylight, and others); (orbit/trajectory events
(occultations, maneuvers, surface object direct view
to Earth). Different event intervals may be combined
(with optional inversion), and applied to a request.

Track Relationships
In some cases, contacts need to be sufficiently sepa-
rated so that on-board data collection has time to
accumulate data but not overfill on-board storage. In
other cases, there are command loss timers that are
triggered if the time interval between contacts is too
long, placing the spacecraft into safe mode. During
critical periods, it may be required to have continu-
ous communications from more than one antenna
at once, so some passes are scheduled as backups for
others. 

Priority
The DSN currently has a priority scheme that ranges
from 1–7, with 7 being nominal tracking and 1 rep-
resenting a spacecraft emergency. Priority is relative-
ly infrequently used, but it does have the effect that
the scheduling engine will try to avoid conflicts with
higher-priority activities if possible. Depending on
their degree of flexibility, missions trade off and com-

Articles

WINTER 2014   11



promise in order to meet their own requirements,
while attempting to accommodate the requirements
of others. As noted above, one of the key goals of S3 is
to facilitate this process of collaborative scheduling.

Preferences
Most preferences are incorporated in the service alias
and timing requirements described above, but some
are directly representable in the scheduling request.
For example, users may choose to schedule early, cen-
tered, or late with respect to the view period or event
timing interval.

Repetitions
One characteristic of DSN scheduling is that, for
most users, it is common to have repeated patterns of
requests over extended time intervals. Frequently
these intervals correspond to explicit phases of the
mission (cruise, approach, fly-by, orbital operations).
These patterns can be quite involved, since they
interleave communication and navigation require-
ments. S3 provides for repeated requests, analogous
to repeated or recurrent meetings in calendaring sys-
tems, in order to minimize the repetitive entry of
detailed request information.

Nonlocal Time Line Constraints
Some users have constraints that affect allocations in
a nonlocal manner, meaning that an extended time
period and possibly multiple activities may have to
be examined to tell whether some preferred condi-
tion is satisfied. Examples of these constraints
include n of m tracks per week should be scheduled
on southern hemisphere tracking stations; x hours of
tracking and ranging per day must be scheduled from
midnight to midnight UTC; the number and timing
of tracks in a week should not allow the on-board
recorder to exceed its expected capacity.

The DSN Scheduling Engine 
The DSE is the component of S3 responsible for
expanding scheduling requests into individual com-
munications passes by allocating time and resources
to each; identifying conflicts in the schedule, such as
contention for resources and any violations of DSN
scheduling rules, and attempting to find conflict-free
allocations; checking scheduling requests for satis-
faction, and attempting to find satisfying solutions;
identifying scheduling opportunities, based on
resource availability and other criteria, or meeting
scheduling request specifications; and searching for
and implementing opportunities for improving
schedule quality

Schedule conflicts are based only on the activity
content of the schedule, not on any correspondence
to schedule requests, and indicate either a resource
overload (for example,  too many activities scheduled
on the available resources) or some other violation of
a schedule feasibility rule. In contrast, violations are
associated with scheduling requests and their tracks,

and indicate that in some way the request is not
being satisfied. Conflicts and violations are permitted
to exist in the schedule — both are identified by the
scheduling engine, recorded in the S3 database, and
made visible to users working with the schedule. The
scheduling engine provides algorithms to reduce or
eliminate both conflicts and violations where possi-
ble, as described below. A block diagram of the DSE is
shown in figure 3, showing the overall dependencies
of the interface message types on the various software
modules.

Architecture
The DSE is based on ASPEN, the planning and sched-
uling framework developed at Jet Propulsion Labora-
tory and previously applied to numerous problem
domains (Chien et al. [2000]; see also Chien et al.
[2012] for a comparison with various time line–based
planning and scheduling systems). In the S3 applica-
tion there may be many simultaneous scheduling
users, each working with a different time segment or
different private subset of the overall schedule. This
has led us to develop an enveloping distributed archi-
tecture (figure 4) with multiple running instances of
ASPEN, each available to serve a single user at a time.
We use a middleware tier to link the ASPEN instances
to their clients, on-board an ASPEN manager applica-
tion (AMA) associated with each running ASPEN
process. A scheduling manager application (SMA)
acts as a central registry of available instances and
allocates incoming work to free servers. This archi-
tecture provides for flexibility and scalability: addi-
tional scheduler instances can be brought online sim-
ply by starting them up: they automatically register
with the singleton SMA process, and are immediate-
ly available for use.  In addition, each AMA provides
a heartbeat message to the SMA every few seconds;
the absence of an AMA signal is detected as an anom-
aly, reported by the SMA, which can automatically
start additional AMA instances to compensate.

To roll out new software versions or configuration
changes, the SMA can automatically terminate AMAs
when they become idle, then start up instances on
the new version. This provides uninterrupted user
service even as software updates are installed. The
SMA also allocates free AMA instances to incoming
clients, distributing work over all available host
machines and thus balancing the load. The SMA can
be configured to automatically start additional AMA
instances in case the base set on a host all become
busy; in this way, service can gracefully degrade in
that all users may see slower response times, but none
are locked out of the system entirely. Finally, the SMA
process can be restarted, for example,  to move it to
another host, and upon starting up it will automati-
cally locate and register all running AMA instances in
the environment, without interrupting ongoing user
sessions.

The DSE communicates with clients using an XML-
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based messaging protocol, similar in concept to
HTTP sessions, but with session state maintained by
one of the AMA servers, and with responses to time-
consuming operations returned asynchronously.
Each active user has one or more active sessions,
which has loaded all the data related to a schedule
that user is working on. This speeds the client-server
interaction, especially when editing scheduling

requests and activities, when there can be numerous
incremental schedule changes.

Next we discuss some of the challenges related to
modeling (DSN services, multiple simultaneous
spacecrafts, nonlocal time line constraints) and
schedule generation and repair algorithms. We also
discuss the design of service aliases inasmuch as they
underpin all of the DSE functionality.
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Figure 3. A Block Diagram of the DSE Architecture.



Modeling of DSN Services
One of the challenges of modeling the DSN schedul-
ing domain is the wide range of options available for
making use of the network. As previously described,
one of the primary attributes of a scheduling request
is the specification of the DSN services that are need-
ed, which must be transformed into a set of specific
resource reservations to satisfy the request. It has
been a key element of the DSE design that users can
specify their needs at a more general and abstract lev-
el, and that the system will translate into the details,
ensuring the right antennas and equipment are
scheduled. This has the obvious advantage that there
is flexibility in the implementation of a request that
can be used by the DSN systems, for example,  to
optimize the schedule or to reschedule on short
notice in case assets go down. At the same time, the
scheduling system needs to handle a very detailed
specification of requested tracking time, down to the

selection of individual antennas and equipment
types to be reserved. A design to accommodate this
spectrum of possibilities has been developed and
implemented in the DSE, and is illustrated in figure 5.

Each DSN service user or mission must define one
or more service configurations, which are referred to
by a name or alias. Each configuration specifies the
following information: (1) one or more choices for
how antennas and equipment can be allocated to
meet the user’s DSN requirements; (2) for each
choice, which sets of antenna and equipment are
acceptable; and (3) for each antenna/equipment
combination, what are the default values for associ-
ated tracking parameters, such as setup and teardown
time before and after the track, the 16-character
activity description for the track, a standardized work
category used to identify the kind of activity, and  if
applicable, a specific sequence of events that define
all steps that occur during the track.
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Figure 4. An Overview of the S3 System Architecture. 

The DSN scheduling engine manages and provides a set of servers that respond to users’ requests for scheduling services through the S3 web
application.



A choice within an alias represents a high-level
configuration option. For example, some missions
may require either a single 70-meter antenna, or two
or more arrayed 34-meter antennas. Each of these
possibilities corresponds to very different antenna
selections, while still satisfying the requirements of
the overall service specification. Within a choice, all
acceptable sets of antennas/equipment combinations
must be specified, in preference order (if applicable).
Antenna/equipment combinations within a single
antenna choice are in the form of a single list, while
those in array choices contain multiple such lists.
The same antenna may play different roles within
these options, for example as a reference or slave
antenna depending on how the equipment is to be
configured.

Depending on the nature of the activity, different
times must be scheduled for the activity setup (before
tracking starts) and teardown (after it completes).

Typical setup times are 30 to 90 minutes, while tear-
down times are usually shorter. The alias definition
specifies the default (minimum) setup and teardown
time for each antenna/equipment option. In special
circumstances these times may be lengthened, but
may not be shortened without violating DSN opera-
tional rules (and causing a setup or teardown con-
flict).

Once aliases are defined and validated, their usage
in DSE is straightforward. Whenever a user creates a
scheduling requirement, a service alias must be spec-
ified. The selected alias then determines all the
remaining DSN asset requirements and options,
while the remainder of the requirement goes on to
specify parameters such as timing, duration, and
relationships to other tracks. By separating the defi-
nition of aliases from their usage, it becomes easier to
validate them to ensure that any selection is a legal
DSN configuration for that service user.
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Figure 5. An Illustration of the Structure of a Service Alias Representing a Choice Between a 
Single Antenna and Multiple Antenna (Array) Implementation of the Same Tracking Duration. 

Red highlights the information related to a single-track choice (left) and blue that related to a two-antenna array choice (right). More com-
plex aliases are used to represent up to four station arrays, specialized ranging tracks (DDOR), separate uplink and downlink options for
multiple spacecraft tracked all at once, and maintenance activities that affect an entire complex or the entire DSN at once.



Most DSN service users will define at least several
aliases corresponding to their commonly used sched-
uling configurations. For example, one alias might
specify downlink-only configurations, while another
might be used for both downlink and uplink: the lat-
ter requires the allocation of transmitters as well as
receivers and decoders. 

The example illustrated in figure 5 shows how the
definition of a service alias for the spacecraft Voyager
1 encapsulates the alternative options of scheduling
on a single 70-meter antenna, or alternatively on a
pair of compatible 34-meter antennas. The schedul-
ing user need only specify the service alias name TTC
v0, a widely used acronym for telemetry, tracking,
and commanding, and the scheduling engine will
ensure that any associated activities are compatible
with the service alias. Service aliases are versioned
over time and can be phased in and out of usage as
spacecraft or ground system capabilities change.

In addition to specifying which service alias
applies to a given requirement, the DSE provides a
capability for overriding the definition of that alias
in any requirement in which it is used. An alias over-
ride can only restrict the full set of choices allowed by
the alias, not add additional ones. As a result, vali-
dating the original alias is sufficient to ensure that
only legal configurations can be generated by the
scheduling system. Examples of possible alias over-
rides include limits to a single antenna versus an
arrayed configuration; limits to one or more DSN
complexes (Goldstone, Canberra, or Madrid); limits
to a specific antenna subnet (70 meter, 34 meter, and
others); and limits  to a single specific antenna and
equipment combination.

In addition to filtering the set of antenna and
equipment choices, users can also override the
default values associated with any choice. For exam-
ple, a particular requirement might need an extend-
ed setup time, or customized activity description
string that differs from the default. These can be spec-
ified using alias overrides.

In addition to antenna and equipment options,
certain other attributes of any corresponding activi-
ties are also specified by the alias. These include
which kind of view period must be used for schedul-
ing, that is,  geometrical rise and set versus higher
elevation transmitter limits; whether the activity is
downlink or uplink only, which is used when sched-
uling MSPA activities (described in the next section);
special activity description suffixes that must be
included to indicate certain types of activities; and an
effective date and time range.

Service alias definitions are currently captured in
XML files that specify all properties of the alias. They
are reported in HTML format for users to use and
review. A key design feature of the service alias con-
cept in the DSE is that the same XML files are used by
the DSE as the domain-specific model of DSN activi-
ties and assets, and in the S3 GUI as the set of all legal-

ly selectable choices. Any changes to assets, aliases,
or other mission parameters are immediately reflect-
ed in the DSE as well as the GUI, without code
changes.

Multiple Spacecraft Per 
Antenna Scheduling
A general capability for the DSN is for a single anten-
na to communicate with several spacecraft at once
(called multiple spacecraft per antenna, or MSPA);
while two missions may downlink simultaneously to
the antenna, only one may uplink. There are many
benefits to sharing antenna time with multiple mis-
sions: it provides better utilization of the DSN
resources and minimizes antenna setup time needed
to support individual tracks. However, there are sev-
eral drawbacks as well: with multiple missions
involved, it increases the complexity of rescheduling
of tracks as all missions need to agree to a track
change. Also, in the event of a real-time antenna or
equipment failure, it increases the number of mis-
sions affected. At this time, only Mars missions are
able to be part of MSPA groups, though other missions
that occupy the same part of the sky, such as Cluster,
have also been scheduled as MSPA in the past.

MSPA tracks also have several unique constraints
that must be represented within the scheduling
engine. No more than two tracks may be downlink-
ing to the antenna simultaneously. No more than
one track may be uplinking from the antenna at any
time. Only one track per mission can exist within an
MSPA group (single track per mission). Only two mis-
sions can be scheduled to occur simultaneously.
Antenna equipment may be shared between MSPA
tracks. Special rules exist for setup and teardown val-
ues are used for each MSPA track. These values are
dependent on the temporal location of each track.
The track with the earliest start time has a different
setup value than any tracks that start later. Tracks
may be reconfigured midway through execution to
uplink/downlink or downlink only tracks. There can
only be one reconfiguration per track.

Prior to S3, MSPA tracks were represented in the
same manner as regular tracks. To indicate that a track
is a member of an MSPA group, users would manual-
ly enter a unique coded string in the track’s 16-char-
acter activity description field. This string contained
required information such as whether the track is
uplinking or downlinking, the relative priorities of
missions within the group, the reconfiguration time
within the track, and the reconfigured equipment
state. Using the 16-character activity description field
to represent MSPA track details has led to several arti-
ficial constraints in the system: a limited number of
groups allowed per day, an inability to specify multi-
ple track reconfigurations in one MSPA group, and a
limited number of consecutive downlinks.

These limitations have led S3 to represent MSPA
tracks in a different manner. For MSPA-capable mis-
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sions, the tracking time required for uplink and
downlink may differ. Therefore, S3 services for
uplink-only and downlink-only tracks were intro-
duced, specifying only the equipment used for each
tracking type. These services are then referenced by
the requirements, with different required tracking
times specified for uplink and downlink. The engine
will then schedule these tracks and attempt to com-
bine them into single tracks where possible. Repre-
senting separate uplink and downlink tracking time
allows for more flexibility in scheduling individual
tracks and removes several of the artificial constraints
required by use of the 16-character activity descrip-
tion field. However, to support existing tools and
interfaces, a legacy representation of the tracks is still
required. In this legacy view, the separate uplink-only

and downlink-only tracks are merged together and
the activity description fields automatically populat-
ed to represent reconfiguration parameters and
times. This process is illustrated in figure 6.

The need to merge S3 uplink-only and downlink-
only tracks to legacy tracks introduced several issues
that needed to be addressed. Given the unique con-
straints of MSPA tracks and how they are grouped
together, the possibility arises that the S3 tracks are
organized in a manner such that merging them into
legacy tracks is impossible. This is mitigated by
ensuring that when the scheduling engine generates
tracks for MSPA-capable missions, the tracks are
properly grouped together. However, with user con-
trol over track parameters, an S3 activity can be easi-
ly added, deleted, or modified using the schedule
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Figure 6. An Example of S3 Scheduled MSPA Activities and Their Corresponding Legacy Tracks.

(a) An example S3 MSPA grouping on DSS-43 where the uplink-only and downlink-only tracks are represented separately. Two spacecraft
(MRO and M01O) are downlinking simultaneously while the uplink occurs for M01O at the beginning of the track, then transitions to MRO
until the end of the track. The equipment specified for each track represents just the equipment that is needed to support the uplink and
downlink services individually. (b) The same MSPA grouping example as in figure 1, but represented in the legacy track view. In this view,
the uplink and downlink tracks are merged together and the activity description field contains the track reconfiguration times and sup-
porting equipment needed.



editor. For each group of MSPA tracks, the scheduling
engine will report when it is infeasible to generate
legacy tracks. When this occurs, the scheduling
engine will report a conflict and then output the S3

tracks as the legacy tracks and assign a special error
code in the track’s activity description. The types of
MSPA conflicts reported are multiple uplinks (more
than one track simultaneously uplinking on the
same antenna); multiple downlinks (more than two
tracks simultaneously downlinking on the same
antenna); multiple missions (more than two mis-
sions simultaneously tracking); multiple track recon-
figurations (more than one track reconfiguration is
occurring in the merged uplink-only and downlink-
only tracks — this occurs when both the start or end
of the tracks differ) (see figure 7); track reconfigura-
tion time (the track reconfiguration time occurs dur-
ing the pretrack setup time, instead of the during the
tracking time); and downlink coverage (an uplink-
only track is not fully covered by a downlink-only
track). Uplink-only tracks were introduced in S3 and
must be fully merged with  downlink-only tracks in
order to correctly produce legacy tracks.

In addition, to ensure that the merged legacy
tracks meet the service specifications of the user,
embedded within the uplink and downlink require-
ment service aliases are a common set of legal anten-
na/equipment combinations for the merged tracks.
For a legacy track to be considered legal, the merged

configuration must be present in the service aliases
for that mission. If the antenna/equipment combi-
nation is not present, it is reported as a requirement
service violation, prompting the user to make the
appropriate updates to the tracks. Alternatively, the
user may also invoke the scheduling engine to
attempt to resolve the violation.

Time Line Constraints and Preferences
The initial development of S3 has focused on the
most frequently encountered types of scheduling
request types, which directly affect how DSN anten-
na allocations are to be constructed. A second broad
category of scheduling requirements includes those
that indirectly affect allocations in a nonlocal man-
ner. There can be a tradeoff between satisfying these
types of requirements, versus the direct requirements
noted previously. 

We have denoted these types of scheduling
requests as time line constraints or preferences, since
they are best assessed by considering the overall time
line of activities (or subset of activities) for a DSN
service user over some time period. Table 2 includes
a more detailed list of major time line requirement
types and their parameters.

Because these requests have a varying degree of
preference, and therefore need to be accessible to the
judgement of the scheduling users, we have pursued
their incorporation into S3 in two phases; (1) as inte-
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Request Type Examples Parameters 

Total time 8 hours of tracking per day 
6 hours of uplink tracking each midnight to 
midnight UTC 
24 hours of speci�c activity types per week summed 
over four different but related spacecraft 

mission(s) 

service aliases 

time frame (1 day, 1 week, etc.) 
min/max tracking times with 
yellow/red limit 

Tracking gaps 6–12 hour gap between tracks, measured midpoint to 
midpoint 

Gaps no greater than 8 hours measured EOT to BOT 

mission 

service aliases 

min track gap 

max track gap 

yellow limits 
measured by (BOT-BOT, EOT-EOT, 
midtrack to midtrack) 

DSN complex 
distribution 

3 of 10 tracks per week must be scheduled at 
Canberra DSN complex 

At least one track per week must be scheduled at 
each DSN complex 

mission 

duration 

list of (complex, count) 

Recorder Do not exceed on-board recorder volume capacity 
limit 

mission 

track overhead duration 

recorder collection rate (X units/s) 

yellow/red recorder max capacity 
recorder downlink rates (antenna, 
downlink rate X units/s) 

initialization rule 

Table 2. Time Line Requirement Types, with Examples and Parameters.



grated with the scheduling system graphical user
interface (GUI), for visualization along with the actu-
al schedule itself; and (2)  as incorporated into the
DSE algorithm set, for invocation as strategies or
heuristic repair and rescheduling options that can be
included or not into the normal scheduling process

Integration with the S3 GUI has built upon the
deployed S3 HTML5 canvas-based GUI (see figure 2),
which has enabled the rapid extension of the GUI to
additional visualization elements. Examples of the
visualization of each of the major categories of time
line requirements follow.
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Figure 7. An Example of Multiple Track Reconfiguration Conflicts.

(a) When these two MRO tracks are merged together into a legacy track, the track will start as downlink only and be reconfigured midway
at 0545 to uplink and downlink. (b) When these two MRO tracks are merged together into a legacy track, the track will start as uplink and
downlink and be reconfigured midway at 0730 to downlink only. (c) An example of a multiple track reconfiguration conflict. If the two
tracks are merged together into a legacy track, it would begin as downlink only, reconfigure to uplink and downlink at 0415, and then recon-
figure again at 0845 to downlink only. There is a limit of only one track reconfiguration for MSPA tracks.



The total time requirement applies to about 25
percent of the DSN user set, but over a wide range of
time scales, from a full week on down to a fraction of
a single day. An example for the GRAIL A/B mission
(two spacecraft in lunar orbit) is shown in figure 8a.

The tracking gaps time line requirement applies to
about a third of the DSN user set. In some cases, the
gaps of concern are only for certain activity types, as
illustrated in figure 8b where gaps are only significant
between adjacent ranging passes.

About 20 percent of users have DSN complex dis-
tribution requirements, but this varies depending on
the phase of the mission. These requirements are typ-
ically driven by navigation considerations, where it is
important to have ranging data from widely separat-
ed baselines in order to reduce ephemeris errors.
Examples are shown in figure 8a–c, where satisfac-
tion or violation of the distribution requirement is
clearly visible.

While most missions have on-board recorders,
only a handful can potentially be modeled simply
enough to include in the early stages of DSN sched-
uling. For those missions with uniform data collec-
tions rates and well-defined downlink rules, the
recorder time line requirement can provide early vis-
ibility into recorder capacity and how it is affected by
specific scheduling choices. An example is shown in
figure 8c for the STEREO A/B spacecraft.

By providing a highly visual view of these time line
constraints and preferences, users who are working
on schedule changes to resolve conflicts can imme-
diately see whether their proposed changes would
introduce any violations. Presently, many scheduling
users have custom scripts that they use to evaluate
proposals from other users, but by providing for com-
mon models and visibility, feedback can be provided
much more rapidly. This feedback has the potential
to reduce the overall negotiation process effort and
duration.

Overview of Scheduling Strategies
There are a few basic design principles around which
the DSE algorithms have been developed, derived
from the role of the DSE as the provider of intelligent
decision support to DSN schedulers. In support of
schedule repair and negotiation, it is critically impor-
tant that the DSE follow a no surprises paradigm, that
is, no unexpected schedule changes (all changes to
the schedule must be requested, explicitly or implic-
itly, and the same sequence of operations on the
same data must generate the same schedule) and
even for infeasible scheduling requests, attempt to
return something reasonable in response, possibly by
relaxing aspects of the request; along with a diagno-
sis of the sources of infeasibility, this provides a start-
ing point for users to handle the problem

In contrast to this mode of operation is an auto-
generation phase of the scheduling process where the
goal is to integrate scheduling requests from all users.

The result is an initial schedule with minimal con-
flicts and violations to serve as a starting point for
collaborative conflict resolution. In this mode, main-
taining schedule stability is not an objective, and a
much broader range of changes to the scheduled
activities is allowable, provided that overall conflicts
are reduced. The DSE supports both modes of opera-
tion with a portfolio of algorithms that can be
invoked by the S3 system for autogeneration, or by
end users when working on specific conflicted por-
tions of the schedule.

Expanding Requests to Tracks
The initial layout algorithm is the primary algorithm
users invoke to generate tracks to satisfy the specifi-
cations of the request. It is also used to remove any
existing tracks and regenerate them around whatev-
er other activities already exist in the schedule. The
algorithm consists of a series of systematic search
stages over the legal track intervals, successively
relaxing request constraints at each stage if no solu-
tion is found. The systematic search algorithm is a
depth-first search algorithm over the space of avail-
able antenna/equipment start times and durations
for each scheduling request. The set of legal anten-
na/equipment for scheduling is defined in the
request service alias specification, while the search
space of legal start times and durations is defined by
the request quantization value (usually 5 minutes).

The successive relaxation of constraints allow for
tracks to be generated even though the scheduling
request may be infeasible (in isolation or within the
context of the current schedule), and provides the
user a starting point to make corrective changes.
These changes may range from modifying the
scheduling request to introduce more tracking flex-
ibility, to contacting other mission schedulers to
negotiate different request time opportunities. One
of the limitations of the initial layout algorithm is
its ability to schedule collections of requests associ-
ated with track relationships. As it iterates over these
requests, tracks may be generated without regard to
the feasibility of generating tracks for the future
requests in the collection. As a result, it is prone to
creating violations for users whose requests are
highly interconnected.

Relaxation proceeds in two stages, based on sched-
ule content, then on constraint parameters. In the
first phase, if no conflict-free allocation can be found,
the engine successively ignores lower priority activi-
ties, then those of equal priority, and finally all pre-
existing activities. If there is still no satisfying alloca-
tion, then requirement parameters are relaxed in the
following order: (1) timing relationships, (2) gap and
overlap parameters for split tracks, and (3) constrain-
ing event windows. Ultimately, only antenna-to-
spacecraft visibility intervals are considered and an
activity of the specified duration is created to overlap
one of these.
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Figure 8. Time Line Constraints for Three Representative Spacecraft, Depicted in the S3 Scheduling HTML5 GUI.

(a) Example of multiple time line requirements applied to a single spacecraft, here GRAIL A, one of a pair of lunar orbiters. There is a gap
constraint and a minimum tracking time constraint in a 24-hour UTC day (both violated and colored red); there is also a requirement to
track on all three DSN complexes within a 48-hour period (satisfied). (b) Example of a gap constraint between ranging passes only, that is,
ignoring the intervening tracking passes. In this example, the second maximum gap requirement has been violated and the resulting inter-
val is colored red. (c) Example of a recorder time line constraint applied to the STEREO A/B mission pair, showing the violation of the con-
straint in an interval where the accumulated data would exceed the recorder capacity. Note that the recorder volume drops more quickly
when a 70-meter contact (such as DSS-63) is scheduled, due to the higher downlink data rate. The STEREO spacecraft also have a require-
ment to schedule at least one track per week at each complex, here satisfied only for STEREO B.



STN Scheduling
To address the limitations of the initial layout algo-
rithm with interconnected requests, early work has
begun using a simple temporal network (STN) to gen-
erate tracks for a targeted set of DSN users. The algo-
rithm can be described in two parts: pruning of the
legal intervals for each request based on the STN, fol-
lowed by a systematic search of the pruned legal
intervals for a solution.

In pruning the legal intervals, an STN is first ini-
tialized with track time constraints on the request
boundaries and the track relationships. After propa-
gation, the STN is then used to make a first pass at
pruning the legal intervals based on the earliest legal
start time and the latest legal end time for each
request. A second attempt at pruning the legal inter-
vals is performed by adding additional track time
constraints to include the earliest start time and lat-
est end time of a request legal interval. We then sys-
tematically begin searching for a solution by tempo-
rally assigning a track to the each legal interval and
including it into the STN. If the STN is inconsistent,
we reassign a track into the next legal interval for
that request. Once a consistent STN is found, a valid
schedule is generated.

Additional work is still required for the STN sched-
uling algorithm. At present, it is only used for sched-
uling tracks for a small subset of the DSN users where
the requests are tightly connected with timing con-
straints to two preceding and two following activi-
ties, and additionally have irregular and highly
restrictive interval constraints. It will also need to be
extended to support relaxing specific request con-
straints to generate some tracks. With the current
implementation, if a valid solution cannot be found,
no tracks are generated. This is undesirable as it pro-
vides no feedback to the user to determine what the
problem may be in the requests or schedule.

Repairing Conflicts and 
Violations in the Schedule
Once an initial schedule has been generated, con-
flicts and/or violations may exist in the schedule due
to the relaxation of constraints (Johnston and Giu-
liano 2011). The DSE provides schedule repair algo-
rithms to reduce conflicts or violations. These algo-
rithms identify the contributing tracks for each
conflict or violation, and run the systematic search
algorithm on the request. If a solution is found, the
new tracks are accepted. If no solution is found, the
original tracks are not modified. Note that conflicts
and violations are independent, so there are separate
versions provided through the user interface for users
to invoke. This algorithm is focused on only modify-
ing requirements that are directly contributing to the
conflict or violation in order to minimize the impact
on the other parts of the schedule. However, in order
to resolve certain classes of conflicts, multiple tracks
not directly associated with the conflict may need to

be modified. A strategy that addresses these types of
conflicts is discussed next.

The stochastic relayout algorithm generates a new
schedule based on adjustments made to existing
tracks in the schedule. The algorithm loops through
each track in the schedule and stochastically updates
any or all of the parameters including start time,
duration, antenna, and so on. Each new schedule
generated attempts to reduce the number of track
conflicts and request violations, thus addressing the
issue with single-requirement repair as it is able to
find solutions that require modifying multiple tracks
that are not directly related to the conflict/violation.
Compared to initial layout and basic repair, this strat-
egy was able to reduce the number of conflicts and
violations in several test schedules by more than 40
percent.

Conclusions
We have described the DSN scheduling engine com-
ponent of the service scheduling software (S3) system,
a new scheduling system for NASA’s Deep Space Net-
work. The DSE implements a request-driven
approach to scheduling, incorporating a sophisticat-
ed request specification language, algorithms for gen-
erating tracks, resolving conflicts, and repairing
request violations, and a distributed architecture to
provide high-availability service to a large number of
simultaneous users. For more than a year, the DSE
with only a test GUI provided the first step of the
DSN scheduling process by integrating requirements
from all users into a preview schedule. Currently the
S3 system is in full operation, with a browser-based
GUI supporting a geographically distributed user base
engaged in collaborative peer-to-peer scheduling.

At the present time, the S3 software is being
extended to handle long-range and forecasting func-
tionality. By necessity, there are many similarities
between the DSN mid- and long-range planning and
scheduling functions. Underlying both is the set of
current and future DSN assets, including antennas
and equipment, some coming into service and others
being decommissioned. Both are based on DSN usage
requirements from a varying mission set with a wide
range of time-dependent tracking and navigation
needs. Both are charged with arriving at an ultimate-
ly feasible allocation of DSN resources by balancing
user needs and resolving periods of resource con-
tention.

Building on these similarities, the first phase of
development of the loading analysis and planning
software (LAPS) will make direct use of a number of
capabilities already deployed operationally in the
midrange S3 software (see figure 9), including the
model of DSN asset availability for antennas and
equipment, user and mission types, multispacecraft
constellations, and MSPA groupings and their special
scheduling rules. Additionally, LAPS will be able to
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invoke the DSE algorithms used in the midrange
process, which will allow for fully detailed what-if
generation of hypothetical midrange schedule peri-
ods in those cases where sufficient detail is available
to warrant this level of analysis. 

Several other areas are also being addressed with
additional capabilities including the following: (1) a
planning request representation to allow for more
abstract and high-level specification of allocation
needs than the scheduling requirement model allows
(for example 3x 8hr tracks/week on 34-meter BWG
for the 6 months of interplanetary cruise); at the
same time, planning requests will be convertible
automatically into midrange scheduling requests in
order to minimize duplicate data entry and speed up
the midrange process; (2) the capability to define and
run planning scenarios in an automated way, such as
to assess a range of options for down time placement;
to evaluate nominal and fallback requirement

options for resource contention periods; and to
quantify the impact of a mission’s alternative launch
dates on projected resource loading; and (3) a multi-
objective optimization mechanism to automatically
generate a portfolio of candidate plans/schedules
optimizing the trade-offs among multiple quantitive
objectives.

The incorporation of multiobjective optimization
(for example, Brown and Johnston [2013]; Johnston
[2006]) into LAPS offers a new way to optimize DSN
resource allocations, taking into account that there is
no single objective that captures all of the disparate
goals and objectives that are important. Multiobjec-
tive optimization has been employed in a wide vari-
ety of problem domains, including scheduling for
science missions and generating some requirements
inputs to the DSN midrange process (Johnston and
Giuliano 2011). 

Beyond long-range planning and forecasting,
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Figure 9. The DSE Data Model and Key Data Flows. 

The figure illustrates user interactions with the DSN scheduling engine. The extension of midrange S3 functionality to support long-range
planning and forecasting is highlighted.



future work includes extending the scope of S3 to
support near real-time scheduling and cross-network
scheduling scheduling capabilities. 

Extending the scope of S3 to support near real-time
scheduling, the third phase of the DSN scheduling
process, covers the period from execution out to
some number of weeks in the future. Extending S3 to
support this phase involves some challenging tech-
nical problems of integration with existing systems
and support for contingency scheduling (for exam-
ple,  launch slips, unplanned asset down time) as well
as operation at the remote DSN complexes; at the
same time, bringing the information model of S3 into
the real-time domain will allow for improved deci-
sion making considering options that are not now
accessible

In addition to the Deep Space Network, NASA also
operates two other networks with similar communi-
cations and navigation support for certain types of
missions: these networks are the Space Network (SN)
and Near-Earth Network (NEN). For those users who
require services from two or all three of these net-
works, such integration would be a source of signifi-
cantly improved efficiency and cost savings. S3 has
the potential to serve as a common scheduling plat-
form in this regard. It is interesting to note that
nowhere on the S3 scheduling request editor main UI
is there any indication that the user is working with
the DSN; this is apparent only when drilling down
into the detailed visibility intervals and service defi-
nitions.
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n The challenging timeline for DARPA’s Orbital Express mission demanded a flexible,
responsive, and (above all) safe approach to mission planning. Mission planning for space
is challenging because of the mixture of goals and constraints. Every space mission tries to
squeeze all of the capacity possible out of the spacecraft. For Orbital Express, this means per-
forming as many experiments as possible, while still keeping the spacecraft safe. Keeping the
spacecraft safe can be very challenging because we need to maintain the correct thermal
environment (or batteries might freeze), we need to avoid pointing cameras and sensitive
sensors at the sun, we need to keep the spacecraft batteries charged, and we need to keep the
two spacecraft from colliding ... made more difficult as only one of the spacecraft had
thrusters.

Because the mission was a technology demonstration, pertinent planning information
was learned during actual mission execution. For example, we didn’t know for certain how
long it would take to transfer propellant from one spacecraft to the other, although this was
a primary mission goal. The only way to find out was to perform the task and monitor how
long it actually took. This information led to amendments to procedures, which led to
changes in the mission plan. In general, we used the ASPEN planner scheduler to generate
and validate the mission plans. ASPEN is a planning system that allows us to enter all of
the spacecraft constraints, the resources, the communications windows, and our objectives.
ASPEN then could automatically plan our day. We enhanced ASPEN to enable it to reason
about uncertainty. We also developed a model generator that would read the text of a pro-
cedure and translate it into an ASPEN model. Note that a model is the input to ASPEN that
describes constraints, resources, and activities. These technologies had a significant impact
on the success of the Orbital Express mission. Finally, we formulated a technique for con-
verting procedural information to declarative information by transforming procedures into
models of hierarchical task networks (HTNs). The impact of this effort on the mission was
a significant reduction in (1) the execution time of the mission, (2) the daily staff required
to produce plans, and (3) planning errors. Not a single misconfigured command was sent
during operations.

Leveraging Multiple 
Artificial Intelligence Techniques 
to Improve the Responsiveness 

in Operations Planning: 
ASPEN for Orbital Express

Russell Knight, Caroline Chouinard, Grailing Jones, Daniel Tran
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Figure 1. The ASTRO and NextSat Spacecraft, on Orbit Without the Separation Ring.

It is often the case that new technology for space
needs to be taken out of the lab and proven in
space. The primary goal of a technology mission

is to prove the capabilities of newly developed space
technology. Most technology missions have the chal-
lenge of discovering the limits and capabilities of
new systems, and the Defense Advanced Research
Projects Agency’s (DARPA) Orbital Express (OE) mis-
sion was no exception. Orbital Express launched
March 8, 2007, and decommissioned on July 22,
2007. The Orbital Express mission demonstrated on-
orbit servicing of spacecraft, including rendezvous,
transfer of battery and CPU modules, and transfer of
propellant, the actual duration of each being approx-
imated but not known to high enough fidelity to
commit to a communications and operations plan. 

This introduced challenges because pertinent
information needed for planning was not available
until the various technology experiments were per-
formed, but to perform these experiments we needed
to submit plans to reserve communications
resources, configure execution scripts, and monitor
execution. We note that it is often the case that

bounds of performance are known a priori. Our auto-
mated planning system leveraged this information to
help address the inherent uncertainty in experiment
planning. 

The Orbital Express planning cycle consisted of a
long-term plan (planned four weeks in advance) and
a short-term plan (planned the day before opera-
tions). The long-term plan was produced before any
of the experimental/unknown information was
learned. The role of the long-term plan was to ensure
that enough resources are reserved ahead of time.
Planning at this point required accommodation of
the bounds of possible execution. Traditionally, this
level of planning is relatively conservative. For exam-
ple, if we thought it likely that a propellant transfer
would require 20 minutes, but could take up to an
hour, we would plan for the whole hour. We also
couldn’t count on getting all of the communications
passes we asked for, so we would plan for 20 percent
of them to be dropped, and thus ask for more than
we needed.

The short-term plan was produced immediately
before execution, and some of the experimental or
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unknown information is known and should be inte-
grated. Also, we knew with certainty which commu-
nications passes we would be granted. This allowed
us to free resources and helped us to reduce cost or
reduce the risk of other missions using the shared
resources.

Mission planning had many challenges. First,
there was a large degree of uncertainty in the execu-
tion of our tasks, such as, pumping propellant; sec-
ond, the procedures for operations were changing
within hours of the time that we had to deliver our
plans for execution; third, we had to predict how the
on-board execution system would behave so that we
could accommodate its behavior, even though we
were not planning for it explicitly; and fourth, the
problem of building a plan even for single day was
monumental: hundreds of constraints needed to be
checked for thousands of actions, and all needed to
be coordinated with procedures that were being
developed: building a plan by hand was simply infea-
sible, regardless of staffing.

Technologies that address each of these challenges
were leveraged in developing the Orbital Express
ground-planning system are schema-level uncertain-
ty reasoning (for long-term planning), procedure
parsing for model generation (for short-term plan-
ning), procedural to declarative model translation,
and, most importantly, automated planning and
scheduling. 

DARPA’s Orbital Express mission demonstrated on-

orbit servicing of spacecraft. Servicing spacecraft has
a great potential to increase the lifespan of these
exceedingly expensive assets, but the complexity
involved in servicing a spacecraft on orbit had been
overwhelming. Consider that all spacecraft in low
Earth orbit will fall to Earth unless they expend pro-
pellant to stay in orbit. If we could pump more pro-
pellant into these, we would be giving them new life.
Add to this the potential of replacing modules, such
as batteries or central processing units (CPUs), then
the value of on-orbit servicing becomes clear. Two
spacecraft were flown: Boeing’s Autonomous Space
Transport Robotic Operations (ASTRO) spacecraft (see
figure 1), whose role was that of a doctor. ASTRO had
a robotic arm, replacement modules (battery and
CPU), a propellant pumping system, and a capture
device (used to grasp other spacecraft and lock in the
propellant pumping mechanism). Ball Aerospace’s
Next Generation Serviceable Satellite (NextSat) space-
craft (see figures 1 and 2) had the role of a patient.
NextSat could receive propellant and modules, but it
couldn’t maneuver because it had no thrusters. It was
up to ASTRO to perform all of the maneuvering.
Experiments included rendezvous and capture, fluid
propellant transfer, and on-orbit repair. 

The mission planning team was divided into two
units, the rendezvous planners who concerned them-
selves primarily with computing the locations and
visibilities of the spacecraft, and the scenario resource
planners (SRPs) who were concerned with assign-
ment of communications windows, monitoring of
resources, and sending commands to the ASTRO
spacecraft. The SRP position was staffed by Jet Propul-
sion Laboratory (JPL) personnel who used the Activi-
ty Scheduling and Planning Environment (ASPEN)
planner-scheduler. 

We discuss the Orbital Express domain in the con-
text of ASPEN, the technologies added to the planner
to accommodate the mission objectives, and the
ground operations of long-range and daily planning
for the mission.

Mission Operations Planning
The OE mission domain required fast turnaround of
heterogeneous, dynamic plans. Every day was a dif-
ferent scenario, where communication passes could
be lost within hours of the daily planning delivery
deadline. Procedures could change within hours of
the delivery deadline because the impacts of on-orbit
experiments on spacecraft resources (energy and
memory) were to a significant extent unknown. Lim-
ited available communications existed using primari-
ly the high-bandwidth ground-based Air Force Satel-
lite Control Network (AFSCN) sites, while the
relatively low-bandwidth GEO-Synchronous space-
borne tracking and data relay satellite system (TDRSS)
communications could potentially vary by the hour.
The main difference between AFSCN and TDRSS is

Figure 2. The Ejected Separation Ring. 

NextSat (top) is at the end of the robotic arm (upper left).
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that AFSCN sites are ground-based and are only in
view for about 5 minutes (when in low Earth orbit, as
ASTRO and NextSat were), but TDRSS is satellite-
based and is pretty much always in view. The chal-
lenge is that these resources are shared across many
missions, and each mission has to reserve time in
advance. But events can cause resources to become
available or to drop out, so it is often the case that we
need to be able to respond to these changes quickly.

A scenario (see figure 3) typically consisted of a
series of procedures, each of which was written by the
operations personnel in Microsoft Word table format.
Each procedure listed its steps and associated dura-
tions and represented the need for a contact and the
type of contact desired or required. Several proce-
dures had other embedded procedures and some
spanned more than one day. As an example, the
unmated scenario required an initial setup proce-
dure, then the unmated procedure would be kicked
off; the de-mate, hold, and re-mate would execute,
and then a postrendezvous and capture transfer pro-
cedure would be planned. See figure 4 for images of
the unmated scenario midexecution in the de-mated
configuration and in the final stages of berthing to
the mated state.

The schedule of each scenario was dependent on

what had been accomplished to date, as the goal of
each scenario was to become increasingly more
autonomous. The planning schedule was also
dependent on the state of the flight system, the
amount of preparation time needed before execu-
tion, and resources available on future dates. Calen-
dar planning was done by a combination of inputs
from flight directors, mission managers, project
management, and DARPA.

Procedures were delivered to the SRP and copied to
Excel. An ASPEN model-generation script was then
used to create ASPEN Modeling Language (AML) rep-
resentations of the procedures. Once the AML mod-
el existed for a procedure, the ASPEN tool read the
AML description of the procedure and could be used
to add any number of different procedures in a plan
required to make up the scenario. See the data flow
diagram and the final daily plan in figure 5.

Roles of Mission Planning
Mission planning had two primary roles for Orbital
Express: (1) evaluate scenarios for feasibility early in
the design of the mission, and (2) provide responsive
communications and commanding planning and
scheduling during the mission. To serve both roles,

Figure 3. The Orbital Express Scenarios: Increasing Autonomy and Complexity.
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Figure 5. The ASPEN Planner-Scheduler Displays a Daily Plan.
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Figure 4. A Demate/Mate Scenario.

NextSat is 14m away during a departure, then progressive side view configurations of the “Berthing” to “Mated” states are shown.
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we modeled the mission scenarios using the ASPEN
(Rabideau et al. 1999) planning system. OE required
evaluation of many alternatives, so ASPEN was mod-
ified to accommodate reasoning about schema-level
uncertainty. Rehearsals for operations indicated that
the SRP needed to be very responsive to changes in
the procedures. To accommodate this, we imple-
mented a system for reading the procedures and
interpreting these into ASPEN models.

Technologies
The technologies we leveraged were (1) schema-level
uncertainty reasoning, (2) procedure parsing for
model generation, (3) procedural to declarative mod-
el translation, and (4) automated planning and
scheduling. Schema-level uncertainty reasoning has
at its core the basic assumption that certain variables
are uncertain but not independent. Once any are
known, then the others become known. This is
important where a variable is uncertain for an action
and many actions of the same schema (or type) exist
in the plan. For example, the number of retries to
purge the pump lines were unknown (but bounded),
and each attempt required a subplan. Once we knew
the correct number of attempts required for a purge,
it would likely be the same for all subsequent purges.
To accommodate changing scenario procedures, we
ingested the procedures into a tabular format in tem-
poral order, and used a simple natural language pars-
er to read each step and derive the impact of that step
on memory, power, and communications. We then
produced an ASPEN model based on this analysis.
That model was tested and further changed by hand,
if necessary, to reflect the actual procedure. This
resulted in a great savings in time used for modeling
procedures.

Schema-Level Uncertainty Reasoning
To accommodate schema-level uncertainty reasoning
in ASPEN, we modified the ASPEN Modeling Lan-
guage to include a new reserved word — uncertain.
Any parameter of any activity type that was
unknown (but bounded) would be labeled using this
reserved word, such as, 

uncertain int retries = [1, 2] 

or 
uncertain string mode = (idle, transmitting, off).

Then, when an instance of ASPEN was started with
uncertain variables, the cross-product of the instan-
tiations of uncertain variables was used to produce
unique instances of plans. Each of these instances is
called an alternative. Note that this is the cross-prod-
uct of the schema-level instantiations, not the actual
activity-level instantiations. If we take our previous
example, we would instantiate six alternatives:

retries = 1, mode = “idle”

retries = 1, mode = “transmitting”

retries = 1, mode = “off”

retries = 2, mode = “idle”

retries = 2, mode = “transmitting”

retries = 2, mode = “off”

Now, every activity in each alternative would have
the same value, so it wouldn’t matter how many
activities we had. This differs greatly from activity-
level uncertainty. In this case, we would need to gen-
erate an alternative for each possible activity assign-
ment. This means that we would have exponentially
many alternatives with increasing activities. Since the
uncertain parameters are those that we expect to
learn (and to not vary), then we can expect that if a
parameter has a value earlier in the day, it will have
the same value later in the day.

Also, operations staff was loathe to trust a more
analytical and compressed form of uncertainty rea-
soning. It was a very compelling case to see all possi-
ble executions, and when they needed to justify a cer-
tain resource allocation they found it simple and
intuitive to use the set of alternatives.

To perform planning, we plan each alternative as if
it was a separate schedule, and then perform a merge
of the schedules, resulting in what operations people
consider to be “odd” schedules, where we might ask
for resource allocations that are impossible for a sin-
gle spacecraft but still must be accommodated if we
are to accommodate all possible alternatives. If we are
not granted an allocation, we can go to each alterna-
tive and either try to replan it or simply carry it as a
risk.

In practice, uncertain labels were used judiciously,
not only to reduce the size of the set of problems to
solve, but also to keep the solutions presented with-
in the space of what humans could inspect and certi-
fy. The largest cross-product of schemas produced at
most 32 separate plans.

Procedure Parsing for Model Generation
To accommodate late changes in procedures we
implemented software that read procedures and pro-
duced ASPEN models. At first, this seemed like a
daunting problem: we are in essence reading English
text for content and producing a declarative activi-
ty/time line–based model of the procedure. One key
observation we made is that the language of proce-
dures is nearly as strict as a programming language,
so we did not need to produce a parser capable of
complete natural language processing; we just need-
ed to accommodate stylistic differences between
authors. Of course, some free-form text does appear
in the procedures, and the model needed to be anno-
tated such that the ASPEN model parser would com-
plain in a meaningful way and the human modeler
would address the text that was not understood.

This highly circumscribed form of natural lan-
guage arose from the fact that these procedures were
to interleave human actions on the ground and
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machine actions in space. This is in stark contrast to
other procedures (such as International Space Station
[ISS] procedures) that might leave much to the inter-
pretation of the reader and require training to be able
to understand and perform, although currently
efforts are under way to make ISS procedures more
formally structured (Kortenkamp, Bonasso, and
Schreckenghost 2008).

The procedures consisted of an introduction of
human readable text, followed by a table of steps.
They were authored using Microsoft Word. We found
that most of the information needed to generate the
procedure model was available in the table, so we
would copy and paste the table into a Microsoft Excel
document. Our parser was written in Visual Basic and
embedded in the Microsoft Excel document.

Each step of the procedure had a number, the posi-
tion or role responsible for carrying out the step, the
action that was taking place, the response or verifica-
tion to the action, and the expected duration. By
parsing the action, we could determine whether the
step included loops, if statements, or commands.

Loops in the procedures were accommodated
using recursive decompositions. In ASPEN, it is often
convenient to model activities and subactivities in
trees known as hierarchical task networks. This rep-
resentation is handy, but does not accommodate
dynamic structures in the hierarchy. But it does allow
for disjunctions, for example, an activity heater_par-
ent can decompose into either a heater_child or a
dummy activity. If we allow loops in the hierarchy,
we can represent dynamic structures. The problem
introduced by this is that the hierarchy appears to be
infinitely deep. Therefore, we need to ensure that
there are termination criteria; that is, at some point
the loop breaks out to a subbranch that has no loops. 

If statements were modeled using disjunctive
decompositions. Both loops and ifs were candidates
for uncertain variables.

The table also had commands that were to be sent
to the spacecraft at execution time. Some of these
commands were simple in that no further informa-
tion was needed. In this case, the command activity
was included as part of a decomposition. But, some of
the commands required information to be input or
computed. In this case, a human modeler needed to
decide on the information source. To keep this from
accidentally generating a working model, we would
assign a known nonexistent variable the string value
of the text describing the command argument. To
ensure that command arguments and mnemonics
were correct, we produced an ASPEN model from the
command dictionary stored in a Microsoft SQL data-
base. This was a piece of SQL code written by Boeing
personnel. This included the legal bounds for each
argument.

If any procedure had poorly formed commands,
the ASPEN parser would catch them, and the proce-
dure would be corrected. This was a relatively free

value-added effect that resulted in the correction of
many procedures.

Procedural to 
Declarative Model Translation
We have hinted at the necessity of converting proce-
dural modeling information into declarative models.
ASPEN is by design a declarative system. The proce-
dures that were parsed were by nature procedural …
meaning that each consists of a series of steps that
include blocks, decision points (if statements), and
loops. We not only needed to model the ground pro-
cedures but also had to model the on-board
sequencer’s (Timeliner) behavior. These were a col-
lection of scripts that were executed for each com-
mand. The necessity of modeling the on-board exe-
cution comes from the requirement to model power
use and to accommodate communication windows.
These scripts were translated into ASPEN Modeling
Language similarly to the previously mentioned pro-
cedures. 

1. Each step in time is modeled as an individual activ-
ity, with the variables of interest being parameters in
the activity.

2. Each series of steps was modeled as a single block,
with a parameter network being constructed that rep-
resented the execution of the series of steps, as one
might model a program execution in several rows in
Excel.

3. Each if statement was modeled as a hierarchical
activity with a disjunctive decomposition (a this-or-
that decomposition). Constraints were imposed that
forced the selection of the correct decomposition
according the expression being evaluated by the if
statement.

4. Each loop was modeled as a hierarchical activity
with a disjunctive decomposition that included a
recursion (that is, an activity lower in the instantiat-
ed hierarchy could be of the same type or schema as
an activity higher in the hierarchy.) Note that termi-
nation criteria should default to terminating or the
decomposition would expand endlessly on instantia-
tion.

Ad Hoc Adjustments
Of course, the models needed to be maintained. As
the mission progressed, unknown variables were
adjusted to best estimate reality; for example, a
hydrazine propellant transfer became more pre-
dictable after several were successfully demonstrat-
ed. Any model representing a procedure could need
updating over time. There were cases in which the
values simply changed; for example, the rate of a fuel
transfer needed updating. However, there were also
cases in which steps in the procedure needed to be
removed or, more difficult from a planning perspec-
tive, added. To remove a step, the duration of the
step could be set very low, or in the worst case, the
procedure model could simply be regenerated. To
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add steps, we almost always simply regenerated the
model from the procedure using the translator.

Automated Planning
Underlying all was the ASPEN planner-scheduler. No
adaptation-specific code was used for Orbital Express
… all of the adaptation used the out-of-the-box capa-
bilities of ASPEN. To plan any given day the follow-
ing steps were followed:

1. Load all of the known opportunities (AFSCN visi-
bilities, TDRSS visibilities, and procedures that have
already been preplanned by hand or from previous
runs of ASPEN).

2. Instantiate as many alternative plans as necessary
to accommodate the uncertain parameters. In prac-
tice, long-term plans had several alternatives but
short-term plans had only one.

3. Schedule all activities using an earliest-deadline-first
ordering, also known as forward dispatch scheduling.
This results in realigning activities to the known avail-
abilities and initial expansion into the supporting sub-
activities.

4. Iteratively repair the plan to address any plan flaws
(for example, unexpanded decompositions, open tem-
poral associations between activities) and constraint
violations (such as resource oversubscription, state
violations, and timing violations).

Each of these steps was automatically performed
by the ASPEN system under the direction of the SRP.

Long-Range Planning
The planning process for any given day began weeks
in advance. A plan was built from knowledge of the
existing contacts available and an ASPEN-generated
and edited model of what the procedure was to do
and how the contacts should lay out across time (fig-
ure 6)

The AFSCN contacts were reserved up to a limit
and occasionally with elevated priorities specifically
for the unmated scenarios. TDRSS support was origi-
nally also scheduled in the long-range planning time
frame for all scenarios; however, cost constraints and
changes to the plan in the short term dictated the
need for a policy change.

It was determined more efficient to schedule
TDRSS at the daily planning time, except in the case
of unmated scenarios, where the timing and the
more definite guarantee of contacts was crucial.

Although the essential replanning generally
occurred at the daily planning time, variations on
the long-range planning occurred from several fac-
tors. First, our launch delay created the need to
replan all existing long-range plans to shift both
AFSCN and TDRSS requests. Second, changes to mod-
els occurred often during the long-range process, due
to many factors, including updated knowledge of
timing, procedure step removals and additions, and
general modifications to procedure step times or

requirements. Third, occasionally, maintenance
requirements or site operating hours were learned
postdelivery of the long-range planning products and
a replan was necessary. Finally, other factors that
required replanning the long-range products were
often late enough in the plan time line that a new
“midrange” plan was created. This usually was done
a few days outside of the daily planning. Figure 6
depicts the planning flow.

Daily Planning
In the morning of daily planning, the SRP would
receive the list of contacts lost to other spacecraft and
any suggested additions to replace these losses, and
he or she would also receive the most up-to-date list
of TDRSS availabilities. The contact losses would need
to be evaluated against the procedure objectives of
the day to determine whether they could still be met.
The ASPEN model of the procedure could be adjust-
ed as needed to reflect any operations updates, and
the ASPEN activity could be moved around through-
out the day to accommodate the contact require-
ments.

In the nominal case, the planning process would
call for the use of the long-range plan and simply
update necessary timing information to create the
daily plan. However, daily planning was based on
many variable factors culminating in a need for both
simple updating of the plan and completely replan-
ning the long-range plan: (1) The visibilities of con-
tacts with the position of the spacecraft drifts slight-
ly per day and must be updated in the short term to
make most efficient use of the AFSCN communica-
tion times. Even one minute of contact coverage loss
was, at times, considered valuable. (2) The daily
deconfliction process can mean a loss of several con-
tacts based on any number of reasons (site-specific
issues, other satellite conflicts). Losses may require a
shift of the procedure to perform the requested objec-
tives. Also, losses are often accompanied by gains,
and replanning can be based on such new additions
to the plan. (3) Scoping of the day’s long-range plan
may change due to both anomalies and new direc-
tion from operations. Updating the existing plan at
the daily planning time was often required for previ-
ously unknown amounts of needed coverage or for
real-time failures of contacts pushing into the next
day. (4) TDRSS support was originally requested in
advance for all long-range planning, but as cost
became an issue for unused contacts, the requests for
TDRSS became part of the daily planning process.
This was a major addition to the update of the long-
range plan. (5) Dealing with the sometimes unpre-
dictable conditions of space and limited mission
time, a number of unforeseen events could cause the
need to update the long-range plan.
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Impact
We were able to produce several alternatives for long-
term planning so that enough communications
resources were available at the time of execution. (For
each alternative, we needed enough resources to han-
dle all communications. Each alternative was based
on differing execution paths.) We also were able to
deliver operations plans daily, even in the face of
changing procedures and changing resource avail-
ability. Together this contributed to the success of the
mission.

The overall affect of using ASPEN has been approx-
imated by the flight director as a 26 percent reduc-
tion in the execution time of the mission, a 50 per-
cent reduction in the daily staff required to produce
plans, and a 35 percent reduction in planning errors.

Note that by planning error, we mean errors made
by staff in terms of what plans should be executed
that day, not errors in the plans themselves. This
reduction was due to the high visibility of each plan
and ready inspectability by expert staff. In fact, not
a single misconfigured command was sent during
operations.

All of these savings resulted in an estimated over-
all cost reduction of $10.4 million, mostly due to the
reduction in execution time. Keeping in mind that
the total cost of development and operations for the
automated ground planning system was less than $1
million, this becomes a clear winner. Note that this
does not include any economies of scale (which are
normally associated with claims of automation
reducing cost) as each major experiment was per-
formed only once.

Figure 6. The Planning Flow.
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Lessons Learned
With a 100 percent mission criteria success rate, the
Orbital Express project proved that spacecraft servic-
ing is a reality for space operations. The goals for the
JPL ASPEN team were to model the procedures and
constraints of the mission and plan the long-term
and daily operations. Using ASPEN and AML for
Orbital Express modeling and planning, the plan-
ning team was able to represent mission constraints
and procedures. The planning tool was flexible and
adaptable to changing parameters.

In the long-term plan time frame, the plan for the
execution day often changed or had several alterna-
tives in one day (the nominal plan versus a backup
plan). ASPEN’s internal activity structure and repair
algorithm allowed procedures to be shifted easily
from one contact to another and to be deleted and
replaced by new procedures without major rework-
ing of the plan. Daily planning was adaptable to
changes in which procedures and their associated
ASPEN models were updated by operations the day
of planning. The autogeneration of models allowed
the planning team to share new procedure informa-
tion and process it quickly for use on orbit. It also
allowed the decision of using a procedure on a given
day to be made at the very last minute without affect-
ing the mission schedule. Models could be generated
during the daily planning process and used the same
day to plan that day’s contacts.

Originally, NextSat contacts were not going to be
scheduled using ASPEN; however, the simplicity of
adding objectives to contacts with the planning tool,
NextSat’s low-maintenance strategy, and how easy it
was for the SRPs to add the activities in ASPEN
allowed SRPs to plan for multiple satellites and
account for many real-world factors in planning
operations.

The operational success of ASPEN’s OE model can
be largely attributed to the general benefits of auto-
mated planning and scheduling in which reusable
activity models allow for faster human planning and
decrease the need for redundant verification steps in
the operations process; high levels of model parame-
ter control allow quick adjustments to be made to
both activities and the initial and/or ongoing state of
the spacecraft and its domain; further, automated
scheduling helps the plan operator or user view the
“conflicts” that may or may not exist in a plan. The
basic planning constructs of the ASPEN Modeling
Language along with more complex capabilities
introduced for OE (schema-level uncertainty and
recursive decompositions) as well as the method in
which the ASPEN core can invoke specialized func-
tions for any existing model, particularly contributed
to the success of this application deployment.

From an operational standpoint, long-term plan-
ning time could also have been reduced by request-
ing all visible contacts, instead of creating expected
scenarios with their associated contacts; however, the

activities of the scenarios would not have been vali-
dated to the extent they were long before execution.

Related Work
In June 1997, a docking of a Progress supply ship at
the Mir space station was attempted but did not suc-
ceed. The Air Force Research Laboratory (AFRL)
launched XSS-10 in 2003 and XSS-11 in 2005 with
the objectives of advancing autonomous navigation
and maneuvering technologies. Orbital Express was
the first successful demonstrator of autonomous ORU
(Orbital Replacement Unit) transfers in the world and
of autonomous refueling in the United States. While
several other missions over the past decade have
approached the idea of autonomous satellite servic-
ing with rendezvous and other robotic maneuvers,
including NASA’s Demonstration of Autonomous
Rendezvous Technology (DART) satellite and Japan’s
National Space Development Agency (NASDA) Engi-
neering Test Satellite 7, OE was the first successful
demonstrator of autonomous rendezvous and dock-
ing (Dornheim 2006).

Planning operations for the Mars Exploration
Rover (MER) mission is aided by the NASA Ames
Research Center software tool Mixed Initiative Activ-
ity Plan Generator (MAPGEN) (AI-Chang et al. 2003),
which is similar to ASPEN as an automated planner
through the use of activities and temporal con-
straints. The nature of search for MAPGEN does not
allow it to search the infeasible space for plan solu-
tions; that is, when a constraint violation arises, the
planner backtracks. ASPEN admits search in the
infeasible space (in fact, threats and constraint viola-
tions are rolled up into a single generic entity called
a conflict) allowing for faster response to off-nominal
execution (Chien et al. 2000; Chien et al 2005). In
fact, ASPEN has been demonstrated for in situ rover
technology (Castano et al. 2007; Estlin et al. 1999;
Gaines et al. 2008)

P. Maldague, A. Ko, D. Page, and T. Starbird
(Maldague et al. 1997) have developed a schedule
generation framework (APGEN) that automatically
generates and validates plans used for commanding
spacecraft but does not perform general planning and
scheduling.

For an even more expansive survey of time line–
based planning systems, see the paper by Chien et al.
(2012). Note that much of the effort for Orbital
Express was not in planning technology per se (we
assumed it existed and worked), but in agile planning
model generation.
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Enhanced Telemetry 
Monitoring with 

Novelty Detection

José Martínez Heras, Alessandro Donati

The most widely extended approach for automatically
detecting anomalous behavior in space operations is
the use of out-of-limits (OOL) alarms. The OOL

approach consists of defining an upper and lower threshold
so that when a measurement goes above the upper limit or
below the lower one, an alarm is triggered. Then engineers
will inspect the parameter that is out of limits and determine
whether it is an anomaly or not and decide which action to
take (for example, run a procedure). This is the original out-
of-limits concept.

The current OOL concept has evolved to cope with more
situations such as distinguishing between soft and hard lim-
its; for example, a soft OOL triggers a warning to pay atten-
tion, a hard OOL triggers an error that demands attention.
Soft limits are contained within hard limits. In addition OOL
thresholds (soft and hard) can be configured so that differ-
ent thresholds are applicable in different situations (for
example, depending on the working mode of a given instru-
ment). 

n Typically, automatic telemetry monitoring
in space operations is performed by out-of-
limits (OOL) alarms. This approach consists
of defining an upper and lower threshold so
that when a measurement goes above the
upper limit or below the lower one, an alarm
is triggered. We discuss the limitations of the
out-of-limits approach and propose a new
monitoring paradigm based on novelty detec-
tion. The proposed monitoring approach can
detect novel behaviors, which are often signa-
tures of anomalies, very early — allowing
engineers in some cases to react before the
anomaly develops. A prototype implementing
this monitoring approach has been imple-
mented and applied to several ESA missions.
The operational assessment from the XMM-
Newton operations team is presented.
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Figure 1. A Typical Example of Anomalous Behaviors.

Venus Express reaction wheel 4 friction increases starting in day of year 2010.89. This behavior was not detected by out-of-limits alerts as
the upper limit was set to 0.02 at that time. In this case, this behavior was recognized by Venus Express engineers as they closely monitored
the reaction wheels even if they did not trigger any out-of-limits alerts.

While out-of-limits approaches are useful and they
successfully trigger alarms when parameter readings
go out the defined thresholds, they suffer from some
limitations. First, some behaviors are anomalous
even if they are within the defined limits. A typical
example is shown in figure 1. The parameter values
reach the upper limit but do not hit it. Since engi-
neers don’t know when this will happen they have to
monitor key telemetry parameters closely even if in
most cases everything would be nominal. Paradoxi-
cally, sometimes the anomalous behavior is more in
limits than the nominal one. Figure 5, depicted later
on in this article, shows an example of this situation.
More information about this anomaly will be dis-
cussed later. Second, OOL bounds are not defined for
every parameter. Engineers only define OOL for a
subset of parameters for which they want to receive
alarms if they exceed the limits. Therefore, OOL is
not systematic in the sense that it does not cover
every parameter. Third, and quite often, engineers
receive OOL alarms that are completely expected. A
typical example is the OOL bounds defined for the
automatic control gain (AGC) during a pass. At acqui-
sition of signal (AOS) and loss of signal (LOS) the
AGC goes outside limits. However, it is expected to
happen and in every pass these two OOL alarms will

be raised. Ideally, engineers should only have to
investigate real potential anomalies. Finally, it
requires effort to adapt OOL alerts to useful values as
the mission goes through different phases or simply
degrades with time.

The novelty detector project has been developed
to cope with the current OOL limitations. The nov-
elty detector main goal is to automatically detect
anomalies and report them to engineers for further
investigation. The ideal novelty detector should take
into account that parameters can behave nominally
in several different ways. In addition, it should not
make any assumption on what kind of behavior or
how many different behaviors a parameter will have.
This will allow it to work with any parameter without
the need of prior knowledge.

Approaches to Automatic 
Anomaly Identification

There are mainly three approaches to identify novel
behavior (possibly anomalies): supervised, unsuper-
vised, and semisupervised. The supervised approach
consists of having labeled examples of both nominal
and anomalous behavior. This approach works quite
well if we need to recognize previously labeled nom-



Articles

WINTER 2014   39

inal and anomalous behavior. Its major drawback is
that it can only identify anomaly occurrences for the
anomaly types that it knows already. This is a major
limitation since the anomalies that generally will
affect operations the most are the ones that are hap-
pening for the first time. Being able to recognize first-
time-ever anomalies quickly allows flight control
teams to take action immediately.

The unsupervised approach consists of having
unlabeled examples of data — no prior knowledge is
provided. The implicit assumption made by the sys-
tems using a nonsupervised approach is that anom-
alies happen far less often than nominal behaviors.
So they attempt to automatically distinguish what is
nominal and what it anomalous. The major draw-
back is the risk of missing anomalies: if an anomaly
happened several times in the past, a nonsupervised
system may consider it a normal behavior and not
report it in the future.

The semisupervised approach is a combination of
the supervised and unsupervised approaches. It con-
sists of providing only nominal behaviors examples.
The advantages of this approach are that engineers
are in full control to specify what should be consid-
ered as nominal, repeated anomalies can be detected
since they are not in the nominal set, and since no
assumptions are made about the possible behavior of
the anomalies, any anomalous behavior can be
potentially detected.

The proposed monitoring paradigm follows a
semisupervised approach to perform anomaly detec-
tion. We will use the term novelty detection instead of
anomaly detection since the only thing that can be
said is that a behavior is novel when compared to a
set of behaviors known to be nominal. The new
behavior might well be also nominal but so far not
present in the nominal set. The decision of classify-
ing a new behavior as nominal or anomalous is left
to the flight control engineers.

Novel Behavior Detection
To characterize behaviors we compute four statistical
features (average, standard deviation, maximum, and
minimum) of fixed-length periods. The duration of
the time period is chosen so that it represents a nat-
ural time span (for example, orbit period or time cov-
ered by the short-term planning). The exact duration
is not critical; however, it should be long enough to
allow behaviors to develop and not so long that
many different behaviors happen in it. 

While there are other ways to characterize behav-
ior in a given time period (for example, Fourier trans-
formations, wavelets, and so on) we used statistical
features because they are robust to sampling rate
changes and behavior order, and work even if very
few samples are available. In addition, they are com-
patible with the future European Space Operations
Centre (ESOC) infrastructure data archive (DARC).

DARC precomputes and make available these statisti-
cal features.

Figure 2 shows representation of how these fixed
time periods look in a side-by-side two dimensional
comparison. We are showing this representation in
this document only as an example. In reality, four
dimensions (average, standard deviation, maximum,
and minimum) are used simultaneously.

Periods Distance
Once we have defined the representation of a time peri-
od for a given parameter we need to be able to compare
time periods. We need a distance measurement so that
we can say that for a given parameter A, the period X
is closer to the period Y than to the period Z. Mathe-
matically: d(X, Y) < d(X, Z). We use the Euclidean dis-
tance as distance measurement (equation 1):

Outlier Detection
We make use of outlier detection techniques to find
which periods have anomalous behavior. The gener-
al assumption is that anomalous behaviors will have
greater distances to known nominal behaviors than
known nominal behaviors among them. The ques-
tion is how big the distance should be so that it can
be considered a novel behavior. If the distance is too
small many false anomalies will be reported. If the
distance is too big then some anomalies will be
missed.

The solution to overcome the problem of having
to define an outlier distance is to use local density
outlier detection techniques. The most widely used is
called local outlier factor (LOF) (Breunig et al. 2000).
LOF computes a factor that gives an indication of the
degree of outlierness (novel behavior). It takes into
account the density of the k closest points. If they are
very dense, little distance is required to consider a
new behavior a novelty. If the neighbors are sparse a
bigger distance is required to consider a new behav-
ior a novelty.

The major disadvantage of LOF is that the resulting
factor values are quotient values and hard to inter-
pret. A value of 1 or less indicates a clear inlier, but
there is no clear rule for when a point is an outlier. In
one data set, a value of 1.1 may already be an outlier;
in another data set and parameterization (with strong
local fluctuations) a value of 2 could still be an inlier.
These differences can also occur within a data set due
to the locality of the method.

To overcome the LOF limitations we will use local
outlier probabilities (LoOP) (Kriegel et al. 2009). It is
a relatively new method derived from LOF. It uses
inexpensive local statistics to become less sensitive to
the choice of the parameter k. In addition, the result-
ing values are scaled to a value range of [0:1] (Kriegel
et al. 2009), that can be directly interpreted as the

d X,Y( ) =

avgx ! avgy( )
2
+ stdx ! stdy( )

2
+ maxx!maxy( )

2
+ minx!miny( )

2



probability of being a new behavior. Figure 3 shows
an example using two dimensions (for example, aver-
age and standard deviation). LoOP has the advantage
of being more robust and providing a much more
intuitive output. By using LoOP we can rank novel
behaviors by novelty probability showing first the
behaviors with higher chances to be truly novel.

Novel Behavior Detection — 
Summary

We use LoOP (Kriegel et al. 2009) to find whether a
new behavior is novel with respect to a set of given
behaviors. If the set of given behaviors consists of
nominal behaviors only, and LoOP finds that the
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Figure 2. Statistical Features.

Feature extraction and side-by-side comparison of the XMM anomaly shown in figure 5. Every point represents a time period; its position
in the chart is given by its statistical features. Legend: blue consists of nominal periods (1 January 2009 – 31 March 2009), green represents
a spike in April, and red represents the thermostat dithering anomaly3. This two-dimensional example is only an easy way to visualize this
representation. In reality, four dimensions (average, standard deviation, maximum, and minimum) are used simultaneously.
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new behavior is an outlier with high probability, it
can mean only two things: the new behavior is either
an anomaly or it is nominal in a new way (for exam-
ple, it behaves differently than other nominal behav-
iors in the nominal set). The more nominal time peri-
ods the nominal set has, the more the chances that
the reported novelties are really anomalies.

Behaviors are characterized by simple statistical
features (average, standard deviation, maximum, and
minimum) in a fixed-size time period (for example,

duration of an orbit). This means performing LoOP
in four dimensions. Euclidean distance is used to
measure how different two time periods are. The
same procedure is applied to all parameters, and
those with high probability of being novelties are
notified to engineers.

To be mode independent of the choice of the
parameter k (number of closest points to compute
density) we try several k = {10, 20, 30} and use as out-
lier probability the minimum value of these differ-
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ent runs. The assumption is that if a new behavior is
really an outlier it should be an outlier independent-
ly of the number of closest points (k) used to com-
pute the local density. This procedure minimizes the
chances of getting false alarms. It has limitations,
however, because this approach does not consider
novelties in the combination of two or more param-
eters; it works on a parameter-by-parameter basis
only. It is, however, systematic in the sense that it
can be applied to every parameter.

Prototype
If flight control engineers would be able to look every
day at every parameter they would be able to identi-
fy all novelties. Unfortunately, they cannot. There
are way too many parameters (in the order of several
thousands) and the trend is that this number will
increase in future missions. The objective of this pro-
totype is to automate the process of noticing novel
behavior at the parameter behavior level.

New behaviors are often signatures of anomalies
either happening now or in the way to develop.
Noticing them early is of utmost importance for
planning corrective measurements and keeping the
spacecraft healthy. We should take into account that
not every new behavior corresponds to an anomaly:
it could be related to a new environmental condition
(for example, extremely high radiation) or be totally
expected as the result of planned new operations (for
example, Venus orbit insertion).

The functionality of being able to automatically
detect anomalies has been the driver for this project.
However, we understood that we could not build
such system. The closest we can get is identifying a
new behavior as novel when compared to a set of
known behaviors. Hence the name novelty detec-
tion. 

In order to get closer to our goal of being able to
automatically detect anomalies, we choose the
known behavior set so that it only contains nominal
behaviors. With this configuration, when a new
behavior is classified as novel it can only mean two
things: it is either an anomaly or a new nominal
behavior. As time passes, the set of known nominal
behaviors will grow. This has a positive impact in
reducing the number of novelty alerts, as many
behaviors will be classified as nominal.

The novelty detection prototype makes use of mis-
sion utilities and support tools (MUST) (Martínez-
Heras, Baumgartner, and Donati 2005; Baumgartner
et al. 2005) as housekeeping telemetry and ancillary
data provider. The MUST’s performance allows the
performance of advanced monitoring with novelty
detection efficiently.

Functionalities
We will now discuss the two major functionalities of
the novelty detection prototype. The underlying

principle is the same, but one can achieve one func-
tionality or the other depending on which configu-
ration is used.

Identification of Potential Anomalies
The main purpose of the novelty detection prototype
is to detect potential anomalies. For fulfilling this
objective we will use as a known periods set the col-
lection of all known nominal behaviors. This way,
when a new behavior is classified as novel with a high
probability, it is very likely that it would be an anom-
aly. It could be still a new kind of nominal behavior
but, as time passes, this should happen less and less
frequently.

Verification of Expected New Behavior
In addition to identification of potential anomalies,
the same novelty detection technique can be used to
verify the occurrence of an expected new behavior.
For instance, let’s say that certain behavior is expect-
ed as a consequence of a maneuver and we would like
to verify it. A way of doing it with the novelty detec-
tion prototype is by using the recent past as the
known behavior set. The output of the novelty detec-
tion will be the novel behaviors compared with the
recent past. These novelties should contain the
expected new behaviors and possibly other parame-
ters. These parameters that were not initially foreseen
can be considered side effects of the expected behav-
iors.

Input
Two inputs are required to run the novelty detection
prototype: periodicity and the set of known behav-
iors.

Periodicity is the statistical features needed to char-
acterize a fixed-length time period and has to be com-
puted over a large enough time period. A typical
example is to use the periodicity of the orbit or the
amount of time that the short-term planning covers.

Set of known behaviors: the novelty detection will
detect whether a new behavior is novel as compared
with the set on known behaviors specified as input.
Two options are recommended: (1) use all nominal
behaviors: this is ideal to perform anomaly detection;
and (2) use the recent past (this should be used to ver-
ify expected new behavior).

Output
The output consists of a text file that contains the list
of parameters that are believed to be novel. They are
grouped by period and by novelty probability within
periods. Figure 4 shows an example of such an output
file. The same information is stored in a database for
further analysis by client applications.

Operational Validation 
and Current Usage

To prove the feasibility of the monitoring paradigm
with novelty detection we applied it to an already
documented anomaly that the ESA satellite XMM-
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Newton experienced in 2009 and checked when the
novelty detection prototype would have been able to
detect the anomaly. Here is an excerpt of the paper
that describes the anomaly and measures taken by
the FCT (flight control team) to cope with it (Panta-
leoni et al. 2010): 

We noticed that the thermostat T6073 started to have
a strange behavior since mid-May 2009, already 2
months before the failure was spotted. The thermostat
range reduced the temperature where it opened and
started to decrease, a sign of a deterioration of the high
threshold, even if the bottom limit was respected quite
well, until mid-July, when the upper limit and the
lower limit went very close to each other. The ther-
mostat started to oscillate, in a narrow temperature
range, until it did not close anymore at the correct
temperature, and it let the temperature go down to
almost 22 deg. This first temperature drop was not
spotted because it did not generate any OOL. After
that the thermostat had some cycles with a nominal
behavior, but on 13 July 2009 the temperature went
down deeper, to 21.25, triggering an OOL and allow-
ing the FCT to spot the problem.

We configured the novelty detection prototype to
consider data in the range (January 2009, March
2009) as nominal. We used as time period 48 hours
since it is the duration of an XMM-Newton orbit.
Then we run the novelty detection prototype for the
period (April 2009, July 2009). The results is that the
novelty detection prototype managed to find unusu-
al behavior 2 months before the out-of-limit trig-
gered. This is remarkable not only because it allows
to react to anomalies early, but also because it match-
es flight control engineers diagnosis results and mim-
ics the effect of having somebody looking every day
at every parameter and noticing if something new is
happening. Figure 5 shows where the OOL triggered
and where the novel behavior was found. 

Another tests related with caging was performed
with the novelty detection prototype. In the XMM
FCT’s words:

XMM reaction wheel 1 faces unexpected increases in
torque and current consumption during stable point-

ing. The reaction wheel 1 of XMM suffers from an
increment of friction. The possible cause is cage insta-
bility due to under-lubrication, Rosetta, another space-
craft, also suffered from the same problem. The Roset-
ta manufacturer pointed to under-lubrication as a
possible cause. Since this anomalous phenomenon
has been spotted, the damaged reaction wheel has
been closely monitored. The XMM FCT wanted to
know if the novelty detection could have been able to
detect the caging earlier than the flight control team
did?

For this test, nominal data was defined as the month
of May 2005 when no caging was present. May 2010
was investigated for caging on parameter A5249. The
parameter A5249 refers to the torque of the reaction
wheel 1. Caging has effectively been detected and the
probabilities computed are high enough to be seri-
ously considered. In the end, if the XMM flight con-
trol team could have used novelty detection before-
hand, the caging phenomenon would have been
detected and closely monitored earlier. The lifetime of
the damaged wheel could have been saved thanks to
an earlier relubrication.

Currently, the novelty detection prototype checks
every day around 2000 XMM-Newton housekeeping
telemetry parameters and reports which of them, if
any, has a new behavior. The results are sorted by
probability of certainty of being a new behavior. The
novelty detection for XMM is integrated in a wider
scope project, XMM early warning system (XEWS)
(Kirsch et al. 2012). XEWS is developed to perform
near real-time trend analysis of spacecraft parameters
in order to detect early degradation of components.
XEWS will enable the mission to perform early coun-
termeasures in case degradation is detected.

In addition, the novelty detection prototype has
been integrated as a plug-in of WebMUST (Oliveira et
al. 2012). WebMUST is a web-based interface to
access telemetry and ancillary data in the MUST
(Martínez-Heras et al. 2005, Baumgartner et al. 2005)
Repository. WebMUST allows users to very efficient-
ly create plots and reports. WebMUST can also sup-
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0.935057, no-Gaps, 2010-10-14T00:00:00Z [2010.287.00.00.00], NTTX1000, Loop Error Term. 1 
0.817176, no-Gaps, 2010-10-14T00:00:00Z [2010.287.00.00.00], NACW0G15, RW4_SWR estimat friction 
0.935141, no-Gaps, 2010-10-15T00:00:00Z [2010.288.00.00.00], NTTX1000, Loop Error Term. 1 
0.804666, no-Gaps, 2010-10-15T00:00:00Z [2010.288.00.00.00], NACW0R08, AUT_GUID Cmd Quater Vy 

Figure 4. Example Output File.

Novelties found for Venus Express using the novelty detection prototype for verifying expected new behavior. The format of the file out-
put is the probability of being an outlier, whether this parameter had data gaps during this period, the start time of the period (in two time
formats), parameter mnemonic, and parameter description.



port characterizations and anomaly investigation
using the DrMUST (Martínez-Heras et al. 2012,
Martínez-Heras et al. 2009) plug-in. A screen capture
of the novelty detection display for an expected new
behavior is shown in figure 6.

Related Work
The problem of automatically finding unusual
behavior has been addressed by other researchers in
a number of fields, both space and nonspace. 

For instance, A. Patterson-Hine and colleagues
(Patterson-Hine et al. 2001) uses a model-based
approach to detect anomalies in helicopters; howev-
er, model-based approaches require a big upfront
engineering effort. In this project we have focused on
approaches that require as little engineering effort as
possible.

E. Keogh and colleagues (Keogh, Lin, and Fu 2005)

describe the algorithm HOT SAX in order to auto-
matically and efficiently find time series discords.
Time series discords are defined as subsequences of
longer time series that are maximally different to all
the rest of the time series subsequences. Its major
advantage is its simplicity as it just requires a single
input: the length of the subsequence (in our case it
would be the period length). While HOT SAX is suc-
cessful at finding the ranking of discords for time
series, it is of little use to spacecraft engineers that
need to understand if these discords are relevant or
not, especially when they are monitoring thousands
of parameters of different nature. In addition, it is dif-
ficult to know how important a top-ranked discord of
a certain parameter is in relation to the other param-
eters’ top-ranked discords.

D. L. Iverson and colleagues (Iverson et al. 2012)
present the inductive monitoring system (IMS),
which uses clustering to characterize normal itera-
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Figure 5. Nominal Behavior.

February – April, OOL on 13 July. This thermostat has been properly working showing the same behavior for 10 years. However, it started
to have a strange behavior since mid-May 2009 and it was only noticed two months after (July 2009) when it crossed the lower limit. For
this type of anomaly, the out-of-limits checks are not effective because, paradoxically, the behavior of the anomaly was “more in limits”
than before. The proposed novelty detection monitoring technique could find this anomaly two months before the out-of-limit alarm trig-
gered.
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tions between parameters. Engineers provide a vector
describing which measurements make sense to mon-
itor together (for example, pressures, valve positions,
temperatures) and examples of nominal behavior.
Then IMS builds clusters based in the nominal data.
The learning process is influenced by three learning
parameters: the maximum cluster radius, the initial
cluster size, and the cluster growth percent. After the
clusters are created, the IMS performs monitoring by
comparing the current vector data with the clusters
database. If the distance is 0 or close to 0, its behav-
ior is considered nominal. As the distance increases,
the current behavior can be considered more anom-
alous. The clear advantage of IMS over the proposed
novelty detection monitoring technique is that it can
detect unusual behaviors in a combination of param-
eters. However, it has some disadvantages with
respect to the proposed novelty detection technique:
the grouping of which parameters need to be moni-
tored together, apart from requiring engineering
effort, determines the kind of anomalies the system
will be able to detect. In this work we are concerned
with the detection of novel behaviors as soon as pos-
sible even if engineers do not think this will be pos-
sible. Another disadvantage is that the anomaly score
is not intuitive; if it is 0 or close to 0 it is nominal, but
it is not clear when engineers should start paying
attention and performing investigations. A further
disadvantage is the amount of tuning that is required

to have the IMS work properly: the weight in the vec-
tor components and the values of the three learning
parameters have a strong impact in the creation of
the cluster database and, therefore, in the results
from the monitoring phase.

Conclusions
We have introduced a new monitoring paradigm
based on novelty detection. In this approach, every
day every telemetry parameter is automatically
scanned and a list of the parameters that exhibit a
novel behavior is reported to flight control engi-
neers. New behaviors are often signatures of anom-
alies either happening now or in the way to develop.
Noticing them early is of utmost importance for
planning corrective measurements and keeping the
spacecraft healthy. 

A clear advantage of the proposed monitoring par-
adigm is the little amount of engineering effort
required: the only inputs required consist of the peri-
od duration (for example, 1 day) and ranges of times
to be used as examples of nominal behavior. During
the validation phase, users really appreciated that it
generates very few false alarms: the fact that it uses a
local density outlier detection technique avoids the
need of using a distance threshold to detect new
behaviors. Therefore, this approach does not suffer
from the problem of having to define a threshold
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Figure 6. Novelty Detection Display for an Expected New Behavior.

Screen capture of the novelty detection plug-in integrated into WebMUST. It shows an expected new behavior for XMM. The highlighted
area corresponds to the period when the novel behavior was detected.



where having it too small would lead to many false
alarms and having the threshold too big will lead to
missing new behaviors.

The proposed novelty detection monitoring
approach has been successfully validated with XMM
anomalies, finding them before they were triggered
by the out-of-limits alarms, sometimes as early as two
months in advance. Currently, the XMM mission
uses the novelty detection prototype to detect new
behaviors on about 2000 parameters on a daily basis.
We would like to highlight that monitoring with
novelty detection is not mission specific but generic.
We can easily adapt it to any ESOC controlled mis-
sion since we use MUST (Martínez-Heras et al. 2005,
Baumgartner et al. 2005) as the data provider.

We believe that every mission will benefit from the
adoption of the novelty detection monitoring para-
digm as complement to the classic out-of-limits
mechanism. Being able to know which few parame-
ters (out of several thousands) exhibit a new behav-
ior helps flight control engineers to efficiently direct
their monitoring efforts. The ESA’s patents group has
decided to protect the proposed monitoring para-
digm by filing an international patent (WO2013
010569).
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Science Autonomy for 
Rover Subsurface Exploration 

of the Atacama Desert

David Wettergreen, Greydon Foil, 
Michael Furlong, David R. Thompson

Robotic explorers communicate only intermittently
with scientists because of limited opportunities for vis-
ibility by Earth-based antennas and the growing num-

ber of spacecraft needing attention. The data rate of deep
space communication is also very limited. Autonomy can
significantly improve science productivity in intervals
between communication opportunities. In particular, sci-
ence autonomy employs on-board analysis to make deci-
sions affecting the scientific measurements that will be col-
lected or transmitted.

We define science autonomy as using information about sci-
ence objectives and interpretation of science instrument
data to determine rover actions. Science autonomy encom-
passes detection and intelligent selection of measurements
and samples, automatic acquisition of measurements. This
includes automated approach and instrument/tool place-
ment as well as calibration and verification, meaning col-
lecting the intended measurement or sample. Intelligent col-
lection of scientific measurements can increase both the
quantity and quality of information gathered. Science
autonomy describes utilizing scientific information to guide
rover actions, for example, to execute an intelligent survey

n As planetary rovers expand their capabili-
ties, traveling longer distances, deploying
complex tools, and collecting voluminous sci-
entific data, the requirements for intelligent
guidance and control also grow. This, coupled
with limited bandwidth and latencies, moti-
vates on-board autonomy that ensures the
quality of the science data return. Increasing
quality of the data requires better sample
selection, data validation, and data reduc-
tion. Robotic studies in Mars-like desert ter-
rain have advanced autonomy for long-dis-
tance exploration and seeded technologies for
planetary rover missions. In these field exper-
iments the remote science team uses a novel
control strategy that intersperses preplanned
activities with autonomous decision making.
The robot performs automatic data collection,
interpretation, and response at multiple spa-
tial scales. Specific capabilities include instru-
ment calibration, visual targeting of selected
features, an on-board database of collected
data, and a long-range path planner that
guides the robot using analysis of current sur-
face and prior satellite data. Field experi-
ments in the Atacama Desert of Chile over the
past decade demonstrate these capabilities
and illustrate current challenges and future
directions.
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Figure 1. Zoë in the Atacama Desert.

or mapping strategy that adapts as data is collected.
Decisions about which samples to acquire and where
and when to travel next can be based upon metrics of
information gain. Similar metrics can also be used to
prioritize science data for download. Intelligent com-
pression strategies use knowledge or models of con-
tent to interpret and summarize in a compact form.
The ultimate goal of science autonomy is to embody
sufficient understanding, quantified by models and
metrics, so that rovers can independently choose
actions that best support the scientific investigation
in which they are engaged. Rovers will take their
goals and guidance from scientists, but when isolat-
ed they should make scientifically rational decisions
and when in communication they should provide
the most relevant information possible.

Science autonomy is especially valuable for surface
rover operations because missions have finite lifetime
and rarely revisit sites after the first encounter — the
rover must make good decisions and get it right the
first time. Recent demonstrations on spacecraft show
increasingly sophisticated science autonomy capabil-
ities. Milestones include target tracking during the

Deep Impact comet flyby (Mastrodemos, Kubitschek,
and Synnott 2005); target detection and response by
the Mars Exploration Rovers (Castaño et al. 2008;
Estlin et al. 2012); and spectral detection, discovery,
and mapping by the EO-1 spacecraft (Chien et al.
2005; Davies et al. 2006; Doggett et al. 2006; Ip et al.
2006; Thompson et al. 2013). At the same time, new
smart instruments are beginning to incorporate
autonomous science data analysis directly (Wagstaff
et al. 2013) and provide information that can be used
to guide the rovers’ targeting and operation.

These techniques and others will enable surface
rovers to achieve multiday autonomous operations.
Currently multiday rover plans do not travel over the
horizon of yesterday’s imagery, which limits the dai-
ly science yield. However, rover navigation already
permits safe over-the-horizon traverses, and in prin-
ciple a rover could autonomously survey large areas
of terrain with its full suite of instruments. In one
natural arrangement, operators would direct the
rover using waypoints determined from satellite
images, relying on rover autonomy for low-level haz-
ard avoidance and science target selection en route.
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A robot could even divert its path slightly to pursue
science targets of opportunity (Woods et al. 2009).
Multiday plans could therefore make very efficient
use of communications and personnel resources,
enhancing long-distance survey missions.

The Life in the Atacama project is a NASA-spon-
sored effort to evaluate these techniques in the con-
text of desert subsurface biogeology (Cabrol et al.
2007). It uses Zoë (Wettergreen et al. 2008), a rover
capable of traveling more than 10 kilometers per day
and autonomously drilling up to 0.7 meter depth
(figure 1). As a mobility platform it combines navi-
gational autonomy with a changing payload of on-
board science instruments. Previous investigations
have used a fluorescence imager capable of detecting
very specific organic compounds and neutron detec-
tors to measure hydrogen abundance. The current
configuration incorporates a Raman spectrometer, a
visible near infrared point spectrometer, and naviga-
tion and science cameras. During a series of experi-
ments in the summer of 2013, scientists guided Zoë

remotely through the desert while exploring its geol-
ogy and biology.

This article describes the science autonomy system
developed and tested with Zoë. It performed auto-
matic acquisition of visible/near infrared (Vis-NIR)
reflectance spectroscopy throughout the 2013 field
season. This involved a range of different auton -
omous decisions exercised at various spatiotemporal
scales. We begin by describing the rover platform and
instrument payload. We then discuss instrument self-
calibration, science feature detection, and targeting
capabilities. We describe larger-scale path planning
used to select informative paths between waypoints.
We also detail the operational protocols used to com-
mand the rover and the results of its autonomous
data collection. These experiments provide a case
study of science autonomy deployed continuously
over long distances. We report on system perform-
ance, lessons learned, and plans for future develop-
ment.

Figure 2. Locales Visited During the 2013 LITA Field Season.
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Figure 3. Examples of the Different Data Products.

Top: Landsat image used in traverse planning. Bottom: Geologic classification map derived from ASTER data.
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Rover Platform, Instruments, 
and Operations

In typical field work, rover operations follow a daily
cycle in which a remote science team reviews the pri-
or data, decides the next day’s navigation waypoints
and measurements, and then sends these commands
to the rover over a satellite link. This is similar to the
sporadic communications of a planetary mission.
The rover then executes its commands over the
course of the subsequent day. In the Atacama cam-
paign, typical command cycles for Zoë cover 5–10
kilometers per day. Figure 2 shows the entire traverse
path: red dots show locations for imaging and spec-
tral data collection, while white paddles indicate sites
of particular interest where more in-depth study is
performed.

Scientists determine the waypoints for the next
day using geologic and compositional maps pro-
duced from orbital remote sensing data. Here the
ASTER instrument proves particularly useful: its
images have a spatial resolution of 15 meters (visible)
and 30 meters (SWIR), making them capable of
resolving details such as isolated rock outcrops.

While the three visible and six SWIR bands are not
sufficient to conclusively identify mineralogical
composition, they do help discriminate the princi-
pal units of surface material and suggested represen-
tative sites to visit.

Figure 3 shows examples of the different data
products: a Landsat image with three visible bands
reveals terrain morphology and desirable outcrops,
and a multiband ASTER image provides a rough clas-
sification of mineralogical units.

The rover itself is capable of driving more than 10
kilometers per day on challenging desert terrain
(Wettergreen et al. 2008). On-board obstacle avoid-
ance uses three-dimensional geometry from stereo
imagery to identify hazards above the ground plane
and plan local drive arcs that go around them (figure
4). Figure 5 shows the robot and the components
used by its science autonomy system. A pair of for-
ward-facing navigation cameras provide hazard
avoidance capability through a local path planner.
The vertical drill structure delivers subsurface soil to
a microscopic imager and a Raman spectrometer
inside the rover. Analyzing the drill samples takes an
hour or more, so these are deployed judiciously at
specific locations. However, we found that autono-

Figure 4. Hazard Avoidance.



my could play a role in improving the science data
collected by the Vis-NIR spectrometer. The spectrom-
eter is a modified Analytical Spectral Devices Field-
spec Pro that acquires radiance spectra from 0.4–2.5
micrometers at 0.001 micrometer resolution, housed
in the rover body and connected by a fiber optic
cable to a foreoptic telescope mounted on a pan-tilt
mechanism. The foreoptic provides a 1 degree  field
of view, and can be directed at specific targets in the
environment. Its field of regard spans a full 360
degrees azimuth and 90 degrees elevation. A colocat-
ed camera provides visual context to interpret the
spectra.

Zoë’s Vis-NIR reflectance data overlaps in wave-
length with ASTER orbital images; it is a more spa-
tially  and spectrally refined version of the satellite
data. By visiting distinctive terrain units of figure 3,

analysts can refine the remote view with detailed
spectral information and specific mineral absorption
features. In this manner the Vis-NIR data serves as
both a validation of the orbital data and a means to
better interpret the mineralogical constraints and
context for biogeology studies. Each session of Vis-
NIR acquisitions begins with the rover calibrating its
instrument for temperature, solar geometry, and
atmospheric conditions using a white reference tar-
get mounted on the rover deck (figure 5 inset).

Dividing the radiance from the target by the refer-
ence measurement produces reflectance data of the
form shown in figure 6. These spectra were acquired
at locations indicated in the adjacent panoramic
camera subframe, from a distance of approximately 2
meters. The reflectance values represent the fraction
of light reflected at each wavelength; more specific
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Figure 5. The Main Components of Zoë’s Vis-NIR Spectrometer System. 

A Raman spectrometer inside the rover measures pulverized samples from the subsurface drill.



formulations are possible (Schaepman-Strub et al.
2006), but we will use reflectance here in the ordi-
nary Lambertian sense. This assumption should gen-
erally hold for the geologic materials of interest. Note
that the light-colored sediment area in spectra I-III is
associated with a higher average reflectance, as well
as unique spectral features such as the dip near 2
micrometers. These spectra were smoothed using
local linear regression, but some lingering noise
spikes at longer wavelengths evidence the lower sig-
nal level in these spectral regions.

Science Autonomy Methods
Zoë’s science autonomy system includes two basic
capabilities that operate on mesoscale and
macroscale features respectively. Smart targeting can
identify science features in rover navigation imagery
and use this information to point the Vis-NIR spec-
trometer. Adaptive path planning navigates on scales
of tens or hundreds of meters, using satellite images
to select waypoints with distinctive or novel spectra.
We describe each of these techniques in turn.

Smart Targeting
Zoë began each autonomous target selection process
by acquiring a navigation camera image. On-board
image processing then analyzed the scene to find
large contiguous regions of a desired terrain class.
Typically these classes were rough surface features
like rock outcrop or bright sediment patches with
distinctive spectral signatures. Upon finding a feasi-
ble target, the rover recalibrated its Vis-NIR spec-
trometer, pointed at the feature, and collected a
small 3 x 3 raster of spectra centered on the target of
interest. For context, it also acquired a high-resolu-
tion color image of the scene.

The image analysis used a random forest pixel clas-
sification system described in previous work (Foil et
al. 2013; Wagstaff et al. 2013) and adapted to the
Atacama environment. This supervised classification
method learns a mapping from local pixel intensities
to the surface class of that pixel. The model is instan-
tiated as an ensemble of decision trees trained in
advance. At run time, the rover tested each pixel in
the new image and averaged the classification of
each tree in the ensemble. The end result was a clas-
sification map of the entire image, along with asso-
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ciated class posterior probabilities. By subsampling
each image by a factor of four prior to classification,
processing time was less than a second on Zoë’s on-
board laptop-scale CPU.

After image classification, connected components
analysis was used to identify contiguous targets. The
rover then promoted the single largest target of the
desired class for followup data collection. For each
target, a center pixel was determined using the
largest inscribed circle heuristic (Estlin et al. 2012)
and transformed to a pan-tilt angle using the
assumption of a planar terrain surface. Use of navi-
gation camera stereo data would identify a true three-
dimensional position and enable more sophisticated
kinematic solutions. Here we relied on an approxi-
mate planar solution coupled with rastering to
ensure that an inaccurate pointing would still cap-
ture the target in at least one of the Vis-NIR spectra.

Scientists developed several different ways to
incorporate this capability into multiday rover oper-
ations. The first approach was a target check used in
the middle of long traverses. This only deployed the
spectrometer if a feature of interest was found at the
check point. If there was no feature in the rover’s
field of view, it would carry on without spending the
time to calibrate and deploy its spectrometer. In this
fashion, Zoë could cover long distances without
spending undue time on bare or uninteresting ter-
rain. This strategy was also useful near the boundary
of geologic contacts where the precise location was
uncertain. A second strategy involved a paired
panorama that acted as a supplement to a com-
manded Vis-NIR spectral raster. Here the rover com-
mitted all time resources in advance. It calibrated its
spectrometer and acquired data in columns of five
spectra spaced at 10 degree increments directly in
front of the robot and to either side. This provided a
representative sampling of the terrain comprising the
rover’s current ASTER pixel. It then augmented this
dataset with a 3 x 3 raster centered on any target of
interest. Together, these two products gave a better
insight than either taken individually. They met the
dual needs of having representative spectra as well as
capturing distinctive (outlier) features.

Adaptive Path Planning
The science autonomy system also operates on larg-
er scales of tens or hundreds of meters, where it ana-
lyzes satellite data to adjust its traverse path. We
model the explored environment using a standard
geographic or area mixing model where each meas-
urement is a mixture of a small number of end-mem-
ber materials. End members’ spectra combine in pro-
portion to their physical extent on the surface. Most
scenes contain just a few end-member spectra, and
any measurement x can be reconstructed with appro-
priate constituents and mixing fractions. For a scene
with m end members we define the mixing fractions
to be vectors ϕ ∈ Rm. More generally we can model a

spectral image using a linear combination of library
spectra given by a d x m matrix Y. This gives the rela-
tionship x = Y ϕ.

In practice there is always residual error separating
the reconstruction from the measurement. This is
partly attributable to measurement noise, but unless
the library is comprehensive there may also be
incompleteness errors (for example, spectral features
that are expressed in the observations but not present
in the library). A library that reconstructs all spectra
well can be said to have explained the scene, and pro-
vides insight into the mineral compositions in the
remote sensing data. This intuition provides a figure
of merit for an adaptive path-planning system to
select future measurement locations. Zoë’s planner
selects locations, the measurements at which, when
used to augment the collected library Y, provide the
largest expected reduction in unmixing error. The
planner aims to visit locations that are spectrally dis-
tinctive, collecting samples that fully explain the
orbital image.

In detail, we begin with a space of candidate meas-
urement locations L. The robot collects a library of
spectra by sampling at sites B = {b : b ∈ L }. We define
a stochastic measurement function, y = f(b) + ε with
Gaussian-distributed measurement noise ε, that
yields spectral measurements Y = {yi : yi ∈ Rd, 1 ≤ i ≤
m}. Together the observations form a spectral library,
a random m x d matrix written YB. Good measure-
ments reduce the total reconstruction error for select-
ed remote sensing observations given by X = {xi : xi ∈
Rd, 1 ≤ i ≤ n}. We impose a resource cost C(B) to rep-
resent limited time, power, and bandwidth; it must
not exceed a total budget β. For simplicity we will ini-
tially ignore the cost of point-to-point travel.

We define a risk function as the expected recon-
struction error incurred from unmixing the remote
images with the library of spectra collected at the
surface:

(1)

Here we are taking the expectation over the rover’s
observation matrix, which is a random variable.
Computing this expectation is analytically challeng-
ing, so instead we solve the related problem:

(2)

The linear geographic mixing assumption allows us
to infer the expectation E[YB] since in situ spectra
combine in proportion to their extent on the surface.
Due to geographic mixing we can directly substitute
the remotely observed spectra as the expectated
observations. We rewrite the objective function using
remote measurements at sites B, written XB:

R(B) = E min
φ

YBφ −x 2
x∈X

∑










            for φ ≥ 0, C(B) ≤ β

arg minB = min
φ

XBφ −x 2
x∈X

∑

                  for φ ≥ 0,C B( ) ≤ β
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(3)

This allows direct computation of the objective for
any candidate set of measurement locations.

As the robot begins to collect spectra, some ele-
ments of E[Y]  become observed. The matrix ZA rep-
resents the library of spectra collected at previous
locations A = {a : a ∈ L.}. These measurements are a
realization of YA, and can be substituted into the
expectation as the library of in situ spectra grows.
Consequently the library used for unmixing consists
of (1) the actual spectra collected at previous locations
concatenated with (2) the expected spectra collected

R B A( ) = min
φ

XB φ −x 2
x∈X

∑

               for φ ≥ 0,C B( ) ≤ β

at the future candidate locations. The objective is:

(4)

To summarize, this final form reflects the key ele-
ments of Vis-NIR surface exploration: the overall
goal of an accurate model using a handful of spectra,
reflected in the squared error term; the physical
behavior of geographic mixing, which appears as a
positivity constraint; and the overall path-length
budget β representing finite rover energy and time
resources.

Figure 7 portrays the planning process. Here the
robot has collected two spectra to form its library ZA.

R B A( ) = min
φ

ZAXB[ ]φ −x 2
x∈X

∑

               for φ ≥ 0,C B( ) +C A( ) ≤ β
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Figure 7. Formulation of Adaptive Path Planning.



It calculates the expected risk of a candidate path
using remote sensing data at locations XB as a proxy
for future measurements. In this manner, it can
greedily (or nonmyopically) construct an optimal
path. For our tests, the path planning was purely
greedy; we added waypoints one by one, inserting
them into the optimal location in the waypoint
sequence and stopping when the total Euclidean
path cost was exceeded.

During the Atacama field season we defined a
budget defined in terms of path length, typically pro-
viding 1.5 times the straight-line distance to the goal.
The time cost could be significant for longer travers-
es, particularly including the cost of the spectral
measurements at intermediate waypoint. For this rea-
son, most navigation actions were driving com-
mands with adaptive navigation actions at particular
regions of special interest. When it encounters a sci-
ence waypoint in the plan, the science path-planning
software finds the complete interpolating path that
minimizes spectral reconstruction error of the nine-
band ASTER image. It drives to the next intermediate
waypoint along that path, collects a spectrum of the
terrain, and replans the remainder using whatever
path budget remains. That remainder becomes the
next science plan, which is further refined in addi-
tional planning rounds as the rover progresses for-
ward. In this fashion, the science planner can be ful-
ly stateless and react to new data encountered during
the traverse.

Figure 8 shows the benefit of science-aware path
planning in a simple simulation. We simulate a vir-
tual rover traversing the famous Cuprite, Nevada,
mining district, which is known for containing many
distinctive spectral features of interest in highly
localized outcrops (Swayze et al. 1992). Here we
planned rover paths using orbital ASTER data, simu-
lating 256 trials with random start and end points
within the scene. We also simulated high-resolution
in situ acquisitions using coregistered data from the
Airborne Visible Near Infrared Spectrometer (AVIRIS)
(Green et al. 1998).

The comparison considers four different strategies
to fill the path-length budget: a random path, which
bends the path toward randomly selected intermedi-
ate waypoints; a direct path, which begins with a
straight line and then adds ”wiggles” until the total
length is reached; an unconstrained adaptive
approach that minimizes equation 3 but without the
positivity constraint; and an adaptive approach that
enforces positivity of mixing fractions. We recom-
puted the reconstruction error for every trial by
applying nonnegative least squares to the collected
high-resolution spectra. Figure 8 shows each
method’s performance with a box indicating the
median and quartile of the data and the whiskers
indicating the extrema. Both adaptive methods sig-
nificantly outperform the nonadaptive approaches,
with the constrained adaptive method performing

best of all. This performance boost happens because
only the adaptive systems actively pursue the isolat-
ed outcrops with unique mineralogy.

On-board the real rover, a low-level control system
is required to travel safely between these features of
interest. Consequently, Zoë has on-board navigation
software to turn high-level science waypoints, spaced
on the order of tens or hundreds of meters, into low-
level vehicle actions like drive arcs. It uses a software
suite known as the Reliable Autonomous Surface
Mobility (RASM) package (Wettergreen and Wagner
2012) capable of local hazard avoidance and path
planning using a three-dimensional terrain represen-
tation. RASM extracts a cloud of three-dimensional
points from the stereo cameras, orients these points
relative to previously collected data, and builds a tri-
angulated mesh. An A* search algorithm projects
drive arcs across this mesh to compute the cost of
local control actions. On longer scales, graph search
identifies the best path to the next waypoint. RASM
retains knowledge of the topology relating observa-
tion locations to their neighbors, permitting efficient
loop closure and pose estimation over long distances.

Field Season Results
We engaged smart targeting during three days of rover
operations. Table 1 shows the performance for typical
targets during these traverses. Columns indicate the
day (Sol) of operations; the action sequence number,
with TC indicating a target check, PP a paired panora-
ma, and AT a more specific planned data collection
activity; the analysts’ post hoc interpretation of the
feature that was found; and two columns indicating
whether the result was a reasonable science target and
whether the pointing was accurate. Pointing accuracy
was evaluated based on the context image collected
with each spectrum, allowing it to be placed within
the navigation camera image.

Overall, target selection performed reliably. The
majority of targets were either rocks or patches of dis-
tinctive sediment. The only arguable failure was
when the system identified a distant car that fell into
the rover field of view. The pointing solution was
slightly less reliable, since our groundplane assump-
tion tended to break down at the periphery of the
navigation camera image near the horizon.

Occasionally very distant targets would result in
the rover aiming its spectrometer too far into the dis-
tance. Only one scene was totally featureless — an
empty plain — and in this case the rover detected no
targets and successfully abstained from spending any
time resources.

Figure 9 shows several images from the real-time
classification. Here the system was trained to recog-
nize rocks and high albedo soil patches, and it suc-
cessfully finds these features. In the center column, a
red overlay represents the surface labeled as the
belonging to the target class. The black rectangles
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show the field of view of the high-resolution follow-
up image collected by the mast-mounted camera
(right column). Each follow-up image is accompanied
by a 3 x 3 raster of spectra. Even when the target selec-
tion was successful, we did not notice a significant dif-
ference between the on- and off-target spectra. This

may be attributed to low signal to noise. Alternative-
ly, these features may have spectral signatures that
were very similar to the background substrate.

We deployed the adaptive navigation system suc-
cessfully in two instances during the 2013 field cam-
paign. Near the end of the field season the rover vis-
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Figure 8. Adaptive Path-Planning Performance, in Simulation.

Sol Action SR Target Found Target Valid? Pointing Accurate? Notes 

12 TC30 122 Rocks OK OK  

 TC31a 123 Foreground rock OK OK  

 TC31b 125 Foreground rock OK OK  

 TC32 128 Rock pile, sediment OK OK  

13 AT-13-09 172 Disturbed rocks and sediment OK OK  

 PP22 166 Distant rock patch OK BAD 1 

 PP23 160 Distant rock patch OK OK  

 PP24 154 Foreground rocks OK OK  

 PP25 148 Foreground rocks OK OK  

 TC34 158 Foreground sediment patch / rocks OK OK  

 TC34-recon 132 None OK n/a 2 

 TC41 170 Rocks OK BAD 3 

 TC42 164 Distant rock patch OK BAD 4 

14 AT-13-10 190 Car BAD BAD 5 

 PP19 216 Foreground Rock OK OK  

 TC40 183 Rock patch OK OK  

Table 1. Target Detection Results from Playa Exploration Phase. 

1: Aims too high for distant targets. 2: No target in scene. 3: Targeted feature not the largest rock. 4: Very distant feature. 5: Cars in frame.



ited a playa — a dry lakebed approximately 2 kilo-
meters in length that was spectrally distinctive from
the surrounding terrain (figure 10). Figure 11 shows
a typical round of adaptive path planning near the
playa edge. Here the playa is visible as a bright area in
the lower right of the overhead satellite image. The

large pixels represent 15-meter ASTER data. Here
Zoë’s planned path, in blue, diverts to sample the
spectrally distinctive playa surface. The path
changed only slightly in subsequent replanning as
the rover visited each waypoint and incorporated the
new spectra into its solution.
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Figure 9. Examples of Targets Detected in Midtraverse, and Associated Followup Images.

Playa 

start 

end

Sediment / Rock 

Figure 10. A Composite of Rover Images Showing the Playa Where Adaptive Navigation Was Evaluated.
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Figure 11. Demonstration of Adaptive Path Planning.

While the on-board planning gave an intuitive
and reasonable answer, the actual rover paths were
not as expected due to misregistration between
orbital data products and the rover’s on-board GPS
estimate. Postanalysis of the data revealed the real
position was offset by more than 100 meters from the
intended location, so the actual rover path spent
most of its time on the playa. In the future we will

directly address these registration errors with the use
of explicit ground control points (GCPs).

Conclusions
This work demonstrates novel techniques integrating
adaptive autonomous science activities with pre-
planned data collection. Zoë’s system will continue
to mature in the coming year.
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Multirobot Coordination 
for Space Exploration

Logan Yliniemi, Adrian K. Agogino, Kagan Tumer

Imagine for a moment that you’re tasked with teleoperat-
ing (controlling with a joystick) a Mars rover as it navi-
gates across the surface. You watch the feed from the on-

board camera as the rover rolls along the surface, when you
notice the terrain changing ahead, so you instruct the rover
to turn. The problem? You’re 6 minutes too late. Due to the
speed-of-light delay in communication between yourself
and the rover, your monolithic multimillion dollar project is
in pieces at the bottom of a Martian canyon, and the near-
est repairman is 65 million miles away.

There are, of course, solutions to this type of problem.
You can instruct it to travel a very small distance and reeval-
uate the rover’s situation before the next round of travel, but
this leads to painfully slow processes that take orders of mag-
nitude longer than they would on Earth. The speed of light
is slow enough that it hinders any attempts at interacting
regularly with a rover on another planet.

But what if, instead of attempting to control every aspect
of the rover’s operation, we were able to take a step back and
simply tell the rover what we’re trying to find and have it
report back when it finds something we’ll think is interest-
ing? Giving the rover this type of autonomy removes the
need for constant interaction and makes the speed of light a
moot point.

Hard-coding a procedure for handling all of the cases a
rover could encounter while navigating — and the thou-
sands of other tasks that a rover might have to undertake —
is not a good option in these cases. The need for flexibility is
key, and the on-board storage space is typically quite limit-
ed. Due to the large distances, communication lag, and
changing mission parameters, any efforts in space explo-

n Teams of artificially intelligent planetary
rovers have tremendous potential for space
exploration, allowing for reduced cost,
increased flexibility, and increased reliability.
However, having these multiple autonomous
devices acting simultaneously leads to a prob-
lem of coordination: to achieve the best
results, they should work together. This is not
a simple task. Due to the large distances and
harsh environments, a rover must be able to
perform a wide variety of tasks with a wide
variety of potential teammates in uncertain
and unsafe environments. Directly coding all
the necessary rules that can reliably handle
all of this coordination and uncertainty is
problematic. Instead, this article examines
tackling this problem through the use of coor-
dinated reinforcement learning: rather than
being programmed what to do, the rovers iter-
atively learn through trial and error to take
take actions that lead to high overall system
return. To allow for coordination, yet allow
each agent to learn and act independently, we
employ state-of-the-art reward-shaping tech-
niques. This article uses visualization tech-
niques to break down complex performance
indicators into an accessible form and identi-
fies key future research directions.
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Figure 1. The Speed-of-Light Communication Delay Makes Artificial Intelligence a Necessity for Space Exploration.

ration need to be extremely robust to a wide array of
possible disturbances and capable of a wide array of
tasks. In short, as the human race expands its efforts
to explore the solar system, artificial intelligence will
play a key role in many high-level control decisions.

However, giving a rover that cost many person-
years of labor and a multimillion dollar budget com-
plete autonomy over its actions on another planet
might be a bit unnerving. Space is a harsh and dan-
gerous place; what if it isn’t able to achieve the tasks
it needs to? Worse, what if the rover finds an unpre-
dicted and creative way to fail? These are legitimate
concerns, worth addressing seriously.

One way to mitigate these concerns is to take the
concept of a single traditional monolithic rover and
broke it up into many pieces, creating a team of
rovers, with one to embody each of these pieces. Each
would be simple and perform just a few functions.
Though each of the pieces is less effective individual-
ly than the monolithic rover, the sum of the pieces is
greater than the whole in many ways.

First, any of the members of the team is signifi-
cantly more expendable than the whole monolithic
rover. This alleviates a large number of concerns and
opens many opportunities. If one rover does find a
way to fail creatively, the remainder of the team is
still completely operational. By the same token, the
team of rovers can undertake more dangerous mis-
sions than the monolithic rover; if the dangerous
conditions lead to the failure of one rover, the rest
can complete the mission. Additionally, redundancy

can be designed into the team for particularly dan-
gerous or critical roles.

Beyond the disposability of the individual team
members, there are other benefits to this team-based
approach. Savings can be realized in construction, as
each rover can be designed with parts from a lower-
cost parts portion of the reliability curve. Similar sav-
ings are available in the design process, as a new team
can be formed with some members that have been
previously designed.

In addition, a team of rovers can have capabilities
that a single monolithic rover cannot, like having
presence in multiple locations at once, which is
incredibly useful for planetary exploration. Ephemer-
al events can be simultaneously observed from sepa-
rate locations (Estlin et al. 2010), even from the
ground and from orbit simultaneously (Chien et al.
2011), which can make interpreting the situation sig-
nificantly easier. Construction tasks that might be
impossible for a single rover with limited degrees of
freedom become much easier. Teams can survey areas
separated by impassible terrain and share long-range
communication resources (Chien et al. 2000).

However, the concerns that we must address
expand rapidly once we start to consider the possi-
bilities that arise with multiple rovers acting in the
same area simultaneously. How do the rovers coordi-
nate so that their efforts lead to the maximum
amount of interesting discoveries? How does a rover
decide between achieving a task on its own versus
helping another rover that has become stuck? How
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does it decide between covering an area that’s been
deemed interesting or exploring an area that hasn’t
received much attention? These are all issues that fall
under the larger umbrella of multiagent artificial
intelligence (or multiagent systems), which is a ripe
area of modern research (Wooldridge 2008).

One technique that has proven useful within the
multiagent systems community is that of reward
shaping used in conjunction with reinforcement
learning. In this paradigm, instead of the rovers
being told what to do, they each individually learn
what to do through an iterative process of trial and
error 1. In this process, each rover learns to maximize
a reward function, measuring its performance. By
carefully shaping the rewards that the rovers receive,
we can promote coordination and improve the
robustness of the learning process (Mataric 1994;
Taylor and Stone 2009). Our goals in reward shaping
are to balance two fundamental tensions in learning:
(1) the rewards that the rovers are maximizing
should be informative enough that they can promote
coordination of the entire system, and (2) they
should be simple enough that the rovers can easily
determine the best actions to take to maximize their
rewards. There are a number of obstacles that can
make achieving this goal more difficult.

Multiagent Coordination Is Hard
Being able to automatically learn intelligent control
policies for autonomous systems is an exciting
prospect for space exploration. Especially within the
context of a coordinated set of autonomous systems,
we have the possibility of achieving increased capa-
bilities while maintaining an adaptive and robust
system. However, these multiagent systems are fun-
damentally different from other types of artificial
intelligence in two ways. First, we have to promote
coordination in a multiagent system (see figure 2),
since agents learning by themselves may work at
cross-purposes, and second, we have to overcome
increased learning complexity as the actions taken by
other agents increase the difficulty that any particu-
lar agent has in determining the value of its actions
with respect to a coordinated goal.

In space applications, this coordination will
involve many issues like optimizing communication
networks, maximizing scientific information
returned from a set of sensors, and coordinating pow-
er usage through shared power resources. As a guid-
ing example, consider a group of autonomous rover
agents set to explore an area of an extraterrestrial
body. Their goal is to observe a series of points of
interest, and gain as much knowledge about these
points as possible on a teamwide level. This means
that ideally each agent within the multiagent system
will cooperate toward the common good, but how to
do this is not immediately obvious. For example, it
may not be readily apparent in practice that a rover

is actively observing a point that has been well stud-
ied at an earlier point in time. The rover’s actions of
observing that point may be a very good choice,
except that the other agents acting in the environ-
ment had already gleaned the necessary information
from the point, making the action redundant.

Complex communication protocols or teamwork
frameworks may offer a solution to this problem, but
it might not be a practical one for space travel. Com-
munication availability is limited, and failures of
existing rovers or introduction of new rovers that
weren’t originally planned into the team are a realis-
tic expectation for space exploration (Stone et al.
2013). Because of the large travel times and distances,
and unpredictable and harsh environments, flexibil-
ity in implementation is key, and the solution must
be robust to all sorts of disturbances.

This flexibility can be developed through the use
of adaptive agent policies, which change over time
to fit the situation the rover encounters. This creates
a learning multiagent system, which allows the team
to effectively deal with changing environments or
mission parameters. A key issue in a learning multia-
gent system is the choice of the reward function that
the agents use.

How to Judge a Reward Function
A multiagent learning system depends on a way to
measure the value of each agent’s behavior. For
instance, did a particular sensor reading give addi-
tional scientific value? Did a particular message sent
efficiently use the communications channel? Did a
particular rover movement put the rover in a good
location and not interfere with the actions of anoth-
er rover? This measurement is called a reward func-
tion, and changing what form the reward function
takes is the science of reward shaping (Chalkiadakis
and Boutilier 2003; Guestrin, Lagoudakis, and Parr
2002; Hu and Wellman 1998; Mataric 1998; Stone
and Veloso 2000; Tumer, Agogino, and Wolpert 2002;
Wolpert and Tumer 2001). An agent will seek to sole-
ly increase its reward function. Thus it should have
two specific properties: sensitivity and alignment.

First, the reward function must be sensitive to the
actions of the agent (Wolpert and Tumer 2001). An
agent taking good actions should receive a high
reward, and an agent taking poor actions should
receive a lower reward. In an unpredictable, stochas-
tic, or multiagent environment, there are other fac-
tors affecting the reward that the agent will receive.
An ill-developed reward function will allow these
random factors to insert a large amount of noise into
the signal offered by the reward function, and as the
signal-to-noise ratio decreases, so does the agent’s
performance.

Second, the reward function must be aligned with
the overall mission that the agent team must achieve
(Wolpert and Tumer 2001). That is, an agent that



increases its own reward should simultaneously be
increasing the system performance. A lack of align-
ment can lead to situations such as the tragedy of the
commons (Hardin 1968, Crowe 1969), wherein a
group of rationally self-concerned agents lead to a
drop in system performance due to working at cross-
purposes. That is, agent A does what it perceives in its
own best interest, as does agent B; in some way, their
actions deplete their shared environment and lead to
both agents being worse off than they would be had
they cooperated for the communal good.

Both of these properties — sensitivity and align-
ment — are critical to multiagent systems. An agent
must be able to clearly discern what it has done to
earn a high reward, and continuing to earn that high
reward must be in the best interest of the system as

a whole. This is especially the case in space applica-
tions, because the large distances and communica-
tion restrictions introduced by limited bandwidth,
limited power, or line-of-sight lead-to time prevent
outside intervention if the system performance were
to go awry. In fact, even identifying that a problem
exists within the system is challenging: space and
extra planetary exploration is a complex and difficult
problem, and it might not be easy to immediately
diagnose when agents aren’t achieving their full
potential.

In this article, we show one approach to diagnos-
ing potential system performance issues through
visualizing the sensitivity and alignment of various
reward structures in a simple and straightforward
manner.
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Figure 2. Effective Single-Agent Learning May Lead to Incompatible Interactions in a Multiagent Setting.

Repetitive exploration and congestion are common problems.



Classic Approaches to Coordination
Through Reward Shaping

There are three classic approaches to solving complex
multiagent systems: robot totalitarianism, robot
socialism, and robot capitalism. Each has specific
advantages and drawbacks.

Robot Totalitarianism (Centralized Control)
First, consider a centralized system in which one
agent is making all necessary decisions for the entire
system as a whole, and all other agents are merely fol-
lowing orders. The advantages here are that perfect
coordination is possible and the pieces of the system
as a whole will cooperate to increase system per-
formance. This typically works well for small systems
consisting of just a few agents (Sutton and Barto
1998). However, such a centralized system can fall
prey to complexities such as communication restric-
tions, component failures — especially where a single
point of failure can stop the entire system — and sim-
ply the difficulty of simultaneously solving a prob-
lem for hundreds or thousands of agents simultane-
ously. In most realistic situations, this is simply not
an option.

Robot Socialism (Global or Team Reward)
Next, consider a system in which each agent is
allowed to act autonomously in the way that it sees
fit, and every agent is given the same global reward,
which represents the system performance as a whole.
They will single-mindedly pursue improvements on
this reward, which means that their efforts are direct-
ed toward improving system performance, due to
this reward having perfect alignment. However,
because there may be hundreds or thousands of
agents acting simultaneously in the shared environ-
ment, it may not be clear what led to the reward. In
a completely linear system of n agents, each agent is
only responsible for 1/n of the reward that they all
receive, which can be entirely drowned out by the (n
– 1)/n portion for which that agent is not responsible.
In a system with 100 agents, that means an agent
might only have dominion over 1 percent of the
reward it receives! This could lead to situations in
which an agent chooses to do nothing, but the sys-
tem reward increases, because other agents found
good actions to take. This would encourage that
agent to continue doing nothing, even though this
hurts the system, due to a lack of sensitivity of the
reward.

Robot Capitalism (Local 
or Perfectly Learnable Reward)
Finally, consider a system in which each agent has a
local reward function related to how productive it is.
For example, a planetary rover could be evaluated on
how many photographs it captures of interesting
rocks. This means that its reward is dependent only

on itself, creating high sensitivity. However, the team
of rovers obtaining hundreds of photographs of the
same rock is not as interesting as obtaining hundreds
of photographs of different rocks, though these
would be evaluated the same with a local scheme.
This means that the local reward is not aligned with
the system-level reward.

Summary
Each of the reward functions has benefits and draw-
backs that are closely mirrored in human systems.
However, we are not limited to just these reward
functions; as we mentioned before, an agent will sin-
gle-mindedly seek to increase its reward, no matter
what it is, whether or not this is in the best interest
of the system at large. Is there, perhaps, a method
that could be as aligned as the global reward, while
as sensitive as the local reward, while still avoiding
the pitfalls of the centralized approach?

Difference Rewards
An ideal solution would be to create a reward that is
aligned with the system reward while removing the
noise associated with other agents acting in the sys-
tem. This would lead agents toward doing every-
thing they can to improve the system’s performance.
Such a reward in a multirover system would reward
a rover for taking a good action that coordinates well
with rovers that are close to it, and would ignore the
effects of distant rovers that were irrelevant.

A way to represent this analytically is to take the
global reward G(z) of the world z, and subtract off
everything that doesn’t have to do with the agent
we’re evaluating, revealing how much of a difference
the agent made to the overall system. This takes the
form

Di(z) = G(z) – G(z–i) (1)

where G(z–i) is the global reward of the world with-
out the contributions of agent i, and Di(z) is the dif-
ference reward.

Let us first consider the alignment of this reward.
G(z) is perfectly aligned with the system reward. G(z–

i) may or may not be aligned, but in this case, it does-
n’t matter, because agent i (whom we are evaluating)
has no impact on G(z–i), by definition. This means
that Di(z) is perfectly aligned, because all parts that
agent i affects are aligned: agent i taking action to
improve Di(z) will simultaneously improve G(z).

Now, let us consider the sensitivity of this reward.
G(z) is as sensitive as the system reward, because it is
identical. However, we remove G(z–i) from the equa-
tion; that is, a large portion of the system — on
which agent i has no impact on the performance —
does not affect Di(z). This means that Di(z) is very
sensitive to the actions of agent i and includes little
noise from the actions of other agents.

Difference rewards are not a miracle cure. They do
require additional computation to determine which
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portions of the system reward are caused by each
agent. However, it is important to note that it is not
necessary to analytically compute these contributions.
In many cases, a simple approximation that serves to
remove a large portion of the noise caused by using
the system-level reward gains significant performance
increases over using the system reward alone.

Although in this article we focus on the continu-
ous rover domain, both the difference reward and the
visualization approach have broad applicability. The
difference reward used in this article has been applied
to many domains, including data routing over a
telecommunication network (Tumer and Wolpert
2000), multiagent gridworld (Tumer, Agogino, and
Wolpert 2002), congestion games such as traffic toll
lanes (Tumer and Wolpert 2004a, 2004b; Wolpert
and Tumer 2001), and optimization problems such
as bin packing (Wolpert, Tumer, and Bandari 2004)
and faulty device selection (Tumer 2005).

Continuous Rover Domain
To examine the properties of the difference reward in
a more practical way, let us return to our example of
a team of rovers on a mission to explore an extrater-
restrial body, like the moon or Mars (figure 3). We
allow each rover to take continuous actions to move
in the space, while receiving noisy sensor data at dis-
crete time steps (Agogino and Tumer 2004).

Points of Interest
Certain points in the team’s area of operation have
been identified as points of interest (POIs), which we
represent as green dots. Figure 4 offers one of the lay-
outs of POIs that we studied, with a series of lower-
valued POIs located to the left on the rectangular
world, and a single high-valued POI located on the
right half. Because multiple simultaneous observa-
tions of the same POI are not valued higher than a
single observation in this domain, the best policy for
the team is to spread out: one agent will closely study
the large POI, while the remainder of the team will
cover the smaller POIs on the other side.

Sensor Model
We assume that the rovers have the ability to sense
the whole domain (except in the results we present
later marked with PO for partial observability), but
even so, using state variables to represent each of the
rovers and POIs individually results in an intractable
learning problem: there are simply too many param-
eters. This is also why a centralized controller does
not function well in this case. We reduce the state
space by providing eight inputs through the process
illustrated in figure 5. For each quadrant, which
rotates to remain aligned with the rover as it moves
through the space, the rover has a rover sensor and
a POI sensor. The rover sensor calculates the relative
density and proximity of rovers within that quad-
rant and condenses this to a single value. The POI
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Figure 3. A Team of Rovers Exploring Various Points of Interest on the Martian Surface. 

Artist’s rendition.



sensor does the same for all POIs within the quad-
rant.

Motion Model
We model the continuous motion of the rovers at
each finite time step as shown in figure 6. We main-
tain the current heading of each rover, and at each
time step the rovers select a value for dy and dx,
where the value of dy represents how far forward the
rover will move, and dx represents how much the
rover will turn at that time step. The rover’s heading
for the next time step is represented as the direction
of the resultant vector (dx + dy), shown as the solid
line in figure 6.

Policy Search
The rovers use multilayer perceptrons (MLPs) with sig-
moid activation functions to map the eight inputs
provided by the four POI sensors and four rover sen-
sors through 10 hidden units to two outputs, dx and
dy, which govern the motion of the rover. The weights
associated with the MLP are established through an
online simulated annealing algorithm that changes

the weights with preset probabilities (Kirkpatrick,
Gelatt, and Vecchi 1983). This is a form of direct pol-
icy search, where the MLPs are the policies.

Reward Structures
We present the visualizations for alignment and sen-
sitivity of four reward structures in this work. The
perfectly learnable local reward, Pi, is calculated by con-
sidering the value of observations of all POIs made
by agent i throughout the course of the simulation,
ignoring the contributions that any other agents had
to the system.

The global team reward, Ti, is calculated by consid-
ering the best observation the team as a whole made
during the course of the simulation.

The difference reward, Di, is calculated similarly to
the perfectly learnable reward Pi, with the exception
that if a second agent j also observed the POI, agent
i is only rewarded with the difference between the
quality of observations. Thus, if two agents observe
a POI equally well, it adds to neither of their
rewards, because the team would have observed it
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High Valued
POI

Low Valued
POIs

Rovers

Figure 4. A Team of Rovers Observing a Set of Points of Interest. 

Each POI has a value, represented by its size here. The team will ideally send one rover to observe the large POI on the right
closely, while the rest spread out in the left region to observe as many small POIs as possible.



anyway. If an agent is the sole observer of a POI, it
gains the full value of the POI observation.

The difference reward under partial observability,
Di(PO), is calculated in the same manner as Di, but
with restrictions on what agent i can observe. Each
rover evaluates itself in the same way as Di, but
because of the partial observability, it is possible that
two rovers will be observing the same POI from
opposite sides, and neither will realize that the POI is
doubly observed (which does not increase the system
performance), and both will credit themselves. Like-
wise, each rover cannot sense POIs located outside of
its observation radius. This is represented in figure 7.

Visualization of Reward Structures
Visualization is an important part of understanding
the inner workings of many systems, but particularly
those of learning systems (Agogino, Martin, and
Ghosh 1999; Bishof, Pinz, and Kropatsch 1992; Gal-
lagher and Downs 1997; Hinton 1989; Hoen et al.
2004; Wejchert and Tesauro 1991). Especially in costly

space systems we need additional validation that our
learning systems are likely to work. Performance simu-
lations can give us good performance bounds in sce-
narios that we can anticipate ahead of time. However,
these simulations may not uniformly test the rovers in
all situations that they may encounter. Learning and
adaptation can allow rovers to adapt to unanticipated
scenarios, but their reward functions still have to have
high sensitivity and alignment to work. The visualiza-
tion presented here can give us greater insight into the
behavior of our reward functions. Our visualizations
can answer important questions such as how often we
think our reward will be aligned with our overall goals
and how sensitive our rewards are to a rover’s actions.

Through visual inspection we can see if there are
important gaps in our coverage, and we can increase
our confidence that a given reward system will work
reliably.

The majority of the results presented in this work
show the relative sensitivity and alignment of each
of the reward structures. We have developed a unique
method for visualizing these, which is illustrated in
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Rover Sensor

Points of Interest Sensor

Points of Interest

Figure 5. Rover Sensing Diagram.

Each rover has eight sensors: four rover sensors and four POI sensors that detect the relative congestion of each in each of
the four quadrants that rotate with the rover as it moves.
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dy

dx
Figure 6. Rover Motion Model.

At each time step, each rover determines a continuous dy value to represent how far it moves in the direction it
is facing, and a dx value determining how far it turns. Its heading at the next time step is the same as the vec-
tor (dx + dy).

Figure 7. Rovers Under Partial Observability of Range Denoted by the Dotted Line. 

Both rover A and rover B can sense and observe POI P, but cannot sense each other. In the Di(PO) formulation,
they both would calculate that theirs was the only observation. Additionally, neither rover has any knowledge
of POI Q.

A

B

P

Q



Figure 8. We use the sensor information from the
rover (left) to determine which of the spaces we will
update (right). The alignment or sensitivity calcula-
tion (Agogino and Tumer 2008) is then represented
by a symbol that takes the form of a “+” or “–” sign;
the brighter the shade of the spot, the further from
the average. A bright “+,” then, represents a very
aligned or very sensitive reward and a bright “–” rep-
resents an antialigned or very nonsensitive reward
for a given POI and rover density, in the case of fig-
ure 9. We also present these calculations projected
onto a specific case of the actual space that the rovers
move through in figure 10. A more general version of
this technique projects onto the principal compo-
nents of the state space, which is more thoroughly
explored in other work (Agogino and Tumer 2008).

Sensitivity and Alignment Analysis
A reward with simultaneously high alignment and
sensitivity will be the easiest for agents to use to
establish high-performing policies. Figure 9 presents
the visualization for each of the reward structures.
Notice that the perfectly learnable reward Pi does

indeed have high sensitivity across the space, but has
low alignment with the global reward in most of the
center areas, which correspond to a moderate con-
centration of rovers and POIs. This area near the cen-
ter of the visualization represents circumstances that
the rovers find themselves in most often (Agogino
and Tumer 2008).

The team reward Ti, by contrast, is very aligned
throughout the search space, but is extremely lack-
ing in sensitivity (denoted by the many “–” signs
throughout the space).

The difference reward Di is both highly aligned
and highly sensitive throughout the search space.
When we reduce the radius at which Di can sense
other rovers and POIs, the visualization from the
Di(PO) row indicates that the sensitivity remains
strong everywhere, but there is a slight drop in align-
ment throughout the space.

So, it would appear that difference rewards (Di)
offer benefits over other rewards, even with partial
observability (Di(PO)), but what does this mean in a
more practical sense? To address this, we created fig-
ure 10, which projects the same type of alignment
into the actual plane in which the rovers are operat-
ing.
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Figure 8. Illustration of the Visualization Calculation Process. 

We use sensor data to determine which spot in the state space a circumstance represents, and place a marker in that location that repre-
sents whether the reward scores highly (bright +), near random (blank) or lowly (bright –).
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Figure 9. Alignment and Sensitivity Visualization for the Four Reward Types, 
Projected Onto a Two-Dimensional Space Representative of the State Space.

Note that the perfectly learnable reward Pi has low alignment through most of the space, and the team reward Ti is
extremely nonsensitive through most of the space, while both instances of the difference reward maintain high per-
formance by both metrics.
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Di (PO)Pi

Aligned Bridges

Figure 10. Alignment Visualization for the Perfectly Learnable Reward Pi, 
and the Difference Reward Under Partial Observability, Di(PO). 

Projected onto the actual plane the rovers operate within.
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Figure 11. Final Performance Attained Versus Communication Radius for the Different Reward Structures. 

Difference rewards maintain robust performance, but team rewards lose significant performance under restricted commu-
nication.



The left figure presents the align-
ment for the perfectly learnable reward
Pi, and the indicated region is
antialigned with the system-level
reward. That is, even though traveling
across this region would be beneficial
to the team (because traveling across
this region is required to reach the
large POI on the right), the rovers that
find themselves in this area of the
space are actively penalized.

The figure on the right presents the
alignment for the difference reward
under observation restrictions Di(PO),
which is qualitatively different within
the highlighted regions: Di(PO) builds
two aligned bridges, which allow the
rovers to pass through the highlighted
region without being penalized while
they travel to the large POI on the
right. Furthermore, the other parts of
the highlighted region are not
antialigned with the system reward
meaning that the rovers are not penal-
ized for traveling through this space;
they merely do not increase their
reward while there.

System Performance
We present system-level performance
in figure 11, which represents the final
system reward after training (y-axis) for
teams of rovers trained on various
rewards (line type), within different
experiments with varying restrictions
on observation radius (x-axis). Points
to the left represent performance
under extreme observation restric-
tions, and points to the right represent
near-full observability. The visualiza-
tions performed in figures 9–10 corre-
spond to full observability for all
rewards except Di(PO), which corre-
sponds to the Di reward at a communi-
cation radius of 10 units in figure 11.

The benefits in sensitivity and align-
ment offered by the difference rewards
Di does result in increased system per-
formance, as shown by the rightmost
portion of figure 11. This reward leads
to high-performing systems of rover
agents with very successful policies.
The global shared team reward Ti is
capable of making some increases over
a local policy under full observability,
but still falls short of the difference
reward.

The remainder of figure 11 presents

a result based on the final system per-
formance attained by agent teams
operating with different rewards under
restricted communications. Agents
trained on the difference reward Di are
robust to a reduced communication
radius, which could easily happen in
cases of a dust storm, craggy land-
scape, or partial sensor failures. Agents
using the perfectly learnable reward Pi
are not affected by these restrictions,
as the actions of other agents don’t
affect their policies.

Agents trained on the team or glob-
al reward Ti show an interesting phe-
nomenon, however. Agents operating
with a large communication radius are
able to perform well as a team, and as
this communication radius is reduced,
so is the quality of the discovered poli-
cies — this much is expected. Howev-
er, as the observation radius is
decreased further, experimental runs
with very low observation radii actual-
ly perform slightly better than those
with moderate observation powers.
This suggests that a little bit of knowl-
edge about the location of other rovers
is actually a bad thing. This can be
explained: as the observation radius is
reduced, agents trained on the team
reward will behave more selfishly, like
rovers using Pi, simply because they
cannot sense the other rovers in the
area; thus the gap between their per-
formance decreases as the restrictions
mirror this case.

Conclusions
Space exploration creates a unique set
of challenges that must be addressed
as we continue expanding our reach in
the solar system. One approach for
dealing with these challenges is
through the use of reinforcement
learning with reward shaping. Care
must be taken in any use of reward
shaping: a solution that works with a
small number of agents will not neces-
sarily scale up in an expected fashion
and might lead to catastrophic system-
level results. The readily obvious team
reward and perfectly learnable reward
both lead to poor results due to their
low sensitivity and alignment, respec-
tively. There is a need for local-level
rewards that can be carried out quick-
ly and efficiently that will scale into
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favorable results at the broader system
level.

Difference rewards are an effective
tool for this by encouraging multia-
gent coordination by their guaranteed
alignment with the system objective,
as well as their high sensitivity to local
actions. They maintain high learnabil-
ity throughout the state space, while
offering perfect alignment with the
system-level reward. This results in
benefits that can be readily visualized
within the space in which a team of
rovers works, creating bridges of high
reward that rovers can cross in
between sparse POIs, and increasing
overall system performance over a per-
sonal or team-based reward.

These properties in tandem with
the robustness to various types of
change within the environment show
that their use in space exploration
applications is an ideal fit. The capa-
bility of using a difference reward to
encourage agents to do their best to
help the team at whatever task is
assigned allows for a team that can
quickly and deftly adjust when mis-
sion parameters change. This can be as
mundane as a sensor failing, or as dra-
matic as a complete mission reassign-
ment.

While developing more sophisti-
cated technologies for sensing more
about the environment in a more effi-
cient manner is a useful step forward,
for multiagent space exploration, the
key problem remains as what should
the agents do to work together? This
persists as a fertile motivating ques-
tion for future research.
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A Review of Real-Time
Strategy Game AI

Glen Robertson, Ian Watson

Games are an ideal domain for exploring the capabili-
ties of artificial intelligence (AI) within a constrained
environment and a fixed set of rules, where problem-

solving techniques can be developed and evaluated before
being applied to more complex real-world problems (Scha-
effer 2001). AI has notably been applied to board games,
such as chess, Scrabble, and backgammon, creating compe-
tition that has sped the development of many heuristic-
based search techniques (Schaeffer 2001). Over the past
decade, there has been increasing interest in research based
on video game AI, which was initiated by Laird and van Lent
(2001) in their call for the use of video games as a test bed
for AI research. They saw video games as a potential area for
iterative advancement in increasingly sophisticated scenar-
ios, eventually leading to the development of human-level
AI. Buro (2003) later called for increased research in real-time
strategy (RTS) games as they provide a sandbox for exploring
various complex challenges that are central to game AI and
many other problems.

Video games are an attractive alternative to robotics for AI
research because they increasingly provide a complex and
realistic environment for simulation, with few of the messy
properties (and cost) of real-world equipment (Buro 2004;
Laird and van Lent 2001). They also present a number of
challenges that set them apart from the simpler board games
that AI has famously been applied to in the past. Video
games often have real-time constraints that prevent players
from thinking extensively about each action, randomness
that prevents players from completely planning future
events, and hidden information that prevents players from

n This literature review covers AI techniques
used for real-time strategy video games, focus-
ing specifically on StarCraft. It finds that the
main areas of current academic research are
in tactical and strategic decision making, plan
recognition, and learning, and it outlines the
research contributions in each of these areas.
The paper then contrasts the use of game AI
in academe and industry, finding the aca-
demic research heavily focused on creating
game-winning agents, while the industry
aims to maximize player enjoyment. It finds
that industry adoption of academic research
is low because it is either inapplicable or too
time-consuming and risky to implement in a
new game, which highlights an area for
potential investigation: bridging the gap
between academe and industry. Finally, the
areas of spatial reasoning, multiscale AI, and
cooperation are found to require future work,
and standardized evaluation methods are pro-
posed to produce comparable results between
studies.
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Figure 1. A Typical Match Start in an RTS Game. 

Worker units have been sent to gather resources (right) and return them to the central building. Resources (recorded top right) are being
spent building an additional worker (bottom center). Dark fog (left) blocks visibility away from player units.
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knowing exactly what the other players are doing.
Similar to many board games, competitive video
games usually require adversarial reasoning to react
according to other players’ actions (Laird and van
Lent 2001; Mehta et al. 2009; Weber, Mateas, and
Jhala 2010).

RTS Games
This article is focused on real-time strategy games,
which are essentially simplified military simulations.
In an RTS game, a player indirectly controls many
units and structures by issuing orders from an over-
head perspective (figure 1) in real time in order to
gather resources, build an infrastructure and an army,
and destroy the opposing player’s forces. The real-
time aspect comes from the fact that players do not
take turns, but instead may perform as many actions
as they are physically able to make, while the game
simulation runs at a constant frame rate (24 frames

per second in StarCraft) to approximate a continuous
flow of time. Some notable RTS games include Dune
II, Total Annihilation, and the Warcraft, Command &
Conquer, Age of Empires, and StarCraft series.

Generally, each match in an RTS game involves
two players starting with a few units and/or struc-
tures in different locations on a two-dimensional ter-
rain (map). Nearby resources can be gathered in order
to produce additional units and structures and pur-
chase upgrades, thus gaining access to more
advanced in-game technology (units, structures, and
upgrades). Additional resources and strategically
important points are spread around the map, forcing
players to spread out their units and buildings in
order to attack or defend these positions. Visibility is
usually limited to a small area around player-owned
units, limiting information and forcing players to
conduct reconnaissance in order to respond effec-
tively to their opponents. In most RTS games, a
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match ends when one player (or team) destroys all
buildings belonging to the opponent player (or
team), although often players will forfeit earlier
when they see they cannot win.

RTS games have a variety of military units, used by
the players to wage war, as well as units and struc-
tures to aid in resource collection, unit production,
and upgrades. During a match, players must balance
the development of their economy, infrastructure,
and upgrades with the production of military units,
so they have enough units to successfully attack and
defend in the present and enough resources and
upgrades to succeed later. They must also decide
which units and structures to produce and which
technologies to advance throughout the game in
order to have access to the appropriate composition
of units at the appropriate times. This long-term
high-level planning and decision making, often
called macromanagement, is referred to in this article
as strategic decision making. In addition to strategic
decision making, players must carefully control their
units in order to maximize their effectiveness on the
battlefield. Groups of units can be maneuvered into
advantageous positions on the map to surround or
escape the enemy, and individual units can be con-
trolled to attack a weak enemy unit or avoid an
incoming attack. This short-term control and deci-
sion making with individual units, often called
micromanagement, and medium-term planning
with groups of units, often called tactics, is referred to
collectively in this article as tactical decision making.

In addition to the general video game challenges
mentioned above, RTS games involve long-term
goals and usually require multiple levels of abstrac-
tion and reasoning. They have a vast space of actions
and game states, with durative actions, a huge
branching factor, and actions that can have long-
term effects throughout the course of a match (Buro
and Churchill 2012; Buro and Furtak 2004; Mehta et
al. 2009; Ontañón 2012; Tozour 2002; Weber,
Mateas, and Jhala 2010). Even compared with Go,
which is currently an active area of AI research, RTS
games present a huge increase in complexity — at
least an order of magnitude increase in the number
of possible game states, actions to choose from,
actions per game, and actions per minute (using stan-
dard rules) (Buro 2004; Schaeffer 2001; Synnaeve and
Bessière 2011b). The state space is so large that tradi-
tional heuristic-based search techniques, which have
proven effective in a range of board games (Schaeffer
2001), have so far been unable to solve all but the
most restricted subproblems of RTS AI. Due to their
complexity and challenges, RTS games are probably
the best current environment in which to pursue
Laird and van Lent’s vision of game AI as a stepping
stone toward human-level AI. It is a particularly
interesting area for AI research because even the best
agents are outmatched by experienced humans
(Huang 2011; Synnaeve and Bessière 2011a; Weber,

Mateas, and Jhala 2010), due to the human abilities
to abstract, reason, learn, plan, and recognize plans
(Buro 2004; Buro and Churchill 2012).

StarCraft
This article primarily examines AI research within a
subtopic of RTS games: the RTS game StarCraft1 (fig-
ure 2). StarCraft is a canonical RTS game, like chess is
to board games, with a huge player base and numer-
ous professional competitions. The game has three
different but very well balanced teams, or races,
allowing for varied strategies and tactics without any
dominant strategy, and requires both strategic and
tactical decision making roughly equally (Synnaeve
and Bessière 2011b). These features give StarCraft an
advantage over other RTS titles that are used for AI
research, such as Wargus2 and ORTS.3

StarCraft was chosen because of its increasing pop-
ularity for use in RTS game AI research, driven by the
Brood War application programming interface
(BWAPI)4 and the AIIDE5 and CIG6 StarCraft AI Com-
petitions. BWAPI provides an interface to program-
matically interact with StarCraft, allowing external
code to query the game state and execute actions as
if they were a player in a match. The competitions
pit StarCraft AI agents (or bots) against each other in
full games of StarCraft to determine the best bots and
improvements each year (Buro and Churchill 2012).
Initially these competitions also involved simplified
challenges based on subtasks in the game, such as
controlling a given army to defeat an opponent with
an equal army, but more recent competitions have
used only complete matches. For more detail on Star-
Craft competitions and bots, see Ontañón et al. (in
press).

In order to develop AI for StarCraft, researchers
have tried many different techniques, as outlined
in table 1. A community has formed around the
game as a research platform, enabling people to
build on each other’s work and avoid repeating the
necessary groundwork before an AI system can be
implemented.

This work includes a terrain analysis module
(Perkins 2010), well-documented source code for a
complete, modular bot (Churchill and Buro 2012),
and preprocessed data sets assembled from thou-
sands of professional games (Synnaeve and Bessière
2012). StarCraft has a lasting popularity among pro-
fessional and amateur players, including a large pro-
fessional gaming scene in South Korea, with interna-
tional competitions awarding millions of dollars in
prizes every year (Churchill and Buro 2011). This
popularity means that there are a large number of
high-quality game logs (replays) available on the
Internet that can be used for data mining, and there
are many players of all skill levels to test against
(Buro and Churchill 2012; Synnaeve and Bessière
2011b; Weber, Mateas, and Jhala 2011a).

This article presents a review of the literature on



RTS AI with an emphasis on StarCraft. It includes
particular research based on other RTS games in the
case that significant literature based on StarCraft is
not (yet) available in that area. The article begins by
outlining the different AI techniques used, grouped
by the area in which they are primarily applied.
These areas are tactical decision making, strategic
decision making, plan recognition, and learning.
This is followed by a comparison of the way game AI
is used in academe and the game industry, which
outlines the differences in goals and discusses the
low adoption of academic research in the industry.
Finally, some areas are identified in which there
does not seem to be sufficient research on topics
that are well-suited to study in the context of RTS
game AI. This last section also calls for standardiza-
tion of the evaluation methods used in StarCraft AI

research in order to make comparison possible
between papers.

Tactical Decision Making
Tactical and micromanagement decisions — control-
ling individual units or groups of units over a short
period of time — often make use of a different tech-
nique from the AI that makes strategic decisions.
These tactical decisions can follow a relatively simple
metric, such as attempting to maximize the amount
of enemy firepower that can be removed from the
playing field in the shortest time (Davis 1999). In the
video game industry, it is common for simple tech-
niques, such as finite state machines, to be used to
make these decisions (Buckland 2005). However,
even in these small-scale decisions, many factors can
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Figure 2. Part of a Player’s Base in StarCraft. 

The white rectangle on the minimap (bottom left) is the area visible on screen. The minimap shows areas that are unexplored (black),
explored but not visible (dark), and visible (light). It also shows the player’s forces (lighter dots) and last-seen enemy buildings (darker dots).
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be considered to attempt to make the best decisions
possible, particularly when using units with varied
abilities (figure 3), but the problem space is not near-
ly as large as that of the full game, making feasible
exploratory approaches to learning domain knowl-
edge (Weber and Mateas 2009). There appears to be
less research interest in this aspect of RTS game AI
than in the area of large-scale, long-term strategic
decision making and learning.

Reinforcement Learning
Reinforcement learning (RL) is an area of machine
learning in which an agent must learn, by trial and
error, optimal actions to take in particular situations
order to maximize an overall reward value (Sutton
and Barto 1998). Through many iterations of weakly
supervised learning, RL can discover new solutions

that are better than previously known solutions. It is
relatively simple to apply to a new domain, as it
requires only a description of the situation and pos-
sible actions, and a reward metric (Manslow 2004).
However, in a domain as complex as an RTS game —
even just for tactical decision making — RL often
requires clever state abstraction mechanisms in order
to learn effectively. This technique is not commonly
used for large-scale strategic decision making, but is
often applied to tactical decision making in RTS
games, likely because of the huge problem space and
delayed reward inherent in strategic decisions, which
make RL difficult.

RL has been applied to StarCraft by Shantia,
Begue, and Wiering (2011), where Sarsa, an algo-
rithm for solving RL problems, is used to learn to
control units in small skirmishes. They made use of
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Figure 3. A Battle in StarCraft.

Intense micromanagement is required to maximize the effectiveness of individual units, especially spellcaster units like the
Protoss Arbiter.
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artificial neural networks to learn the expected
reward for attacking or fleeing with a particular unit
in a given state (figure 4), and chose the action with
the highest expected reward when in-game. The sys-
tem learned to beat the inbuilt StarCraft AI scripting
on average in only small three-unit skirmishes, with
none of the variations learning to beat the in-built
scripting on average in six-unit skirmishes (Shantia,
Begue, and Wiering 2011).

RL techniques have also been applied to other RTS

games. Sharma et al. (2007) and Molineaux, Aha, and
Moore (2008) combine case-based reasoning (CBR)
and RL for learning tactical-level unit control in
MadRTS7 (a description of CBR is presented later on
in this article). Sharma et al. (2007) was able to
increase the learning speed of the RL agent by begin-
ning learning in a simple situation and then gradual-
ly increasing the complexity of the situation. The
resulting performance of the agent was the same or
better than an agent trained in the complex situation
directly.

Their system stores its knowledge in cases that per-
tain to situations it has encountered before, as in
CBR. However, each case stores the expected utility
for every possible action in that situation as well as
the contribution of that case to a reward value, allow-
ing the system to learn desirable actions and situa-
tions. It remains to be seen how well it would work
in a more complex domain.

Molineaux, Aha, and Moore (2008) describe a sys-
tem for RL with nondiscrete actions. Their system
retrieves similar cases from past experience and esti-
mates the result of applying each case’s actions to the
current state. It then uses a separate case base to esti-
mate the value of each estimated resulting state, and
extrapolates around, or interpolates between, the
actions to choose one that is estimated to provide the
maximum value state. This technique results in a sig-
nificant increase in performance when compared
with one using discrete actions (Molineaux, Aha, and
Moore 2008).

Human critique is added to RL by Judah et al.
(2010) in order to learn tactical decision making for
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Figure 4. Game State Information Fed into a Neural Network to Produce an Expected Reward Value for a Particular Action. 

Adapted from Shantia, Begue, and Wiering (2011).

Table 1. AI Techniques Used for StarCraft.

Tactical Decision Making Strategic Decision Making 
and Plan Recognition 

Reinforcement Learning 

Game-Tree Search 

Bayesian models 

Case-Based Reasoning 

Neural Networks 

Case-Based Planning 

Hierarchical Planning 

Behavior Trees 

Goal-Driven Autonomy 

State Space Planning 

Evolutionary Algorithms 

Cognitive Architectures 

Deductive Reasoning 

Probabilistic Reasoning 

Case-Based Reasoning 



controlling a small group of units in combat in War-
gus. By interleaving sessions of autonomous state
space exploration and human critique of the agent’s
actions, the system was able to learn a better policy
in a fraction of the training iterations compared with
using RL alone. However, slightly better overall
results were achieved using human critique only to
train the agent, possibly due to humans giving better
feedback when they can see an immediate result
(Judah et al. 2010).

Marthi et al. (2005) argues that it is preferable to
decrease the apparent complexity of RTS games and
potentially increase the effectiveness of RL or other
techniques by decomposing the game into a hierar-
chy of interacting parts. Using this method, instead
of coordinating a group of units by learning the cor-
rect combination of unit actions, each unit can be
controlled individually with a higher-level group
control affecting each individual’s decision. Similar
hierarchical decomposition appears in many RTS AI
approaches because it reduces complexity from a
combinatorial combination of possibilities — in this
case, possible actions for each unit — down to a mul-
tiplicative combination.

Game-Tree Search
Search-based techniques have so far been unable to
deal with the complexity of the long-term strategic
aspects of RTS games, but they have been successful-
ly applied to smaller-scale or abstracted versions of
RTS combat. To apply these search methods, a simu-
lator is usually required to allow the AI system to
evaluate the results of actions very rapidly in order to
explore the game tree.

Sailer, Buro, and Lanctot (2007) take a game theo-
retic approach by searching for the Nash equilibrium
strategy among a set of known strategies in a simpli-
fied RTS. Their simplified RTS retains just the tactics
aspect of RTS games by concentrating on unit group
movements, so it does not require long-term plan-
ning for building infrastructure and also excludes
micromanagement for controlling individual units.
They use a simulation to compare the expected out-
come from using each of the strategies against their
opponent, for each of the strategies their opponent
could be using (which is drawn from the same set),
and select the Nash-optimal strategy. The simulation
can avoid simulating every time step, skipping
instead to just the states in which something inter-
esting happens, such as a player making a decision,
or units coming into firing range of opponents.
Through this combination of abstraction, state skip-
ping, and needing to examine only the possible
moves prescribed by a pair of known strategies at a
time, it is usually possible to search all the way to an
end-game state very rapidly, which in turn means a
simple evaluation function can be used. The resulting
Nash player was able to defeat each of the scripted
strategies, as long as the set included a viable coun-

terstrategy for each strategy, and it also produced
better results than the max-min and min-max play-
ers (Sailer, Buro, and Lanctot 2007).

Search-based techniques are particularly difficult
to use in StarCraft because of the closed-source
nature of the game and inability to arbitrarily manip-
ulate the game state. This means that the precise
mechanics of the game rules are unclear, and the
game cannot be easily set up to run from a particu-
lar state to be used as a simulator. Furthermore, the
game must carry out expensive calculations such as
unit vision and collisions, and cannot be forced to
skip ahead to just the interesting states, making it
too slow for the purpose of search (Churchill, Saffi-
dine, and Buro 2012). In order to overcome these
problems, Churchill, Saffidine, and Buro (2012) cre-
ated a simulator called SparCraft8 that models Star-
Craft and approximates the rules, but allows the
state to be arbitrarily manipulated and unnecessary
expensive calculations to be ignored (including skip-
ping uninteresting states). Using this simulator and
a modified version of alpha-beta search, which takes
into consideration actions of differing duration, they
could find effective moves for a given configuration
of units. Search time was limited to approximate
real-time conditions, so the moves found were not
optimal. This search allowed them to win an average
of 92 percent of randomized balanced scenarios
against all of the standard scripted strategies they
tested against within their simulator (Churchill, Saf-
fidine, and Buro 2012).

Despite working very well in simulation, the
results do not translate perfectly back to the actual
game of StarCraft, due to simplifications, such as the
lack of unit collisions and acceleration, that affect
the outcome (Churchill and Buro 2012; Churchill,
Saffidine, and Buro 2012). The system was able to
win only 84 percent of scenarios against the built in
StarCraft AI despite the simulation predicting 100
percent, faring the worst in scenarios that were set
up to require hit-and-run behavior (Churchill and
Buro 2012). The main limitation of this system is
that due to the combinatorial explosion of possible
actions and states as the number of units increases,
the number of possible actions in StarCraft, and a
time constraint of 5ms per game frame, the search
will only allow up to eight units per side in a two-
player battle before it is too slow. On the other hand,
better results may be achieved through opponent
modeling, because the search can incorporate
known opponent actions instead of searching
through all possible opponent actions.

When this was tested on the scripted strategies
with a perfect model of each opponent (the scripts
themselves), the search was able to achieve at least a
95 percent win rate against each of the scripts in sim-
ulation (Churchill, Saffidine, and Buro 2012).

Monte Carlo Planning
Monte Carlo planning has received significant atten-
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tion recently in the field of computer Go, but seems
to be almost absent from RTS AI, and (to the authors’
knowledge) completely untested in the domain of
StarCraft. It involves sampling the decision space
using randomly generated plans in order to find out
which plans tend to lead to more successful out-
comes. It may be very suitable for RTS games because
it can deal with uncertainty, randomness, large deci-
sion spaces, and opponent actions through its sam-
pling mechanism. Monte Carlo planning has likely
not yet been applied to StarCraft due to the unavail-
ability of an effective simulator, as was the case with
the search methods above, as well as the complexity
of the domain. However, it has been applied to some
very restricted versions of RTS games. Although both
of the examples seen here are considering tactical-
and unit-level decisions, given a suitable abstraction
and simulation, Monte Carlo tree search (MCTS) may
also be effective at strategic level decision making in
a domain as complex as StarCraft.

Chung, Buro, and Schaeffer (2005) created a cap-
ture-the-flag game in which each player needed to
control a group of units to navigate through obsta-
cles to the opposite side of a map and retrieve the
opponent’s flag. They created a generalized Monte
Carlo planning framework and then applied it to
their game, producing positive results. Unfortunate-
ly, they lacked a strong scripted opponent to test
against, and their system was also very reliant on
heuristic evaluations of intermediate states in order
to make planning decisions. Later, Balla and Fern
(2009) applied the more recent technique of upper
confidence bounds applied to trees (UCT) to a sim-
plified Wargus scenario. A major benefit of their
approach is that it does not require a heuristic evalu-
ation function for intermediate states, and instead
plays a game randomly out to a terminal state in
order to evaluate a plan. The system was evaluated by
playing against a range of scripts and a human play-
er in a scenario involving multiple friendly and ene-
my groups of the basic footman unit placed around
an empty map. In these experiments, the UCT sys-
tem made decisions at the tactical level for moving
groups of units while micromanagement was con-
trolled by the inbuilt Wargus AI, and the UCT evalu-
ated terminal states based on either unit hit points
remaining or time taken. The system was able to win
all of the scenarios, unlike any of the scripts, and to
overall outperform all of the other scripts and the
human player on the particular metric (either hit
points or time) that it was using.

Other Techniques
Various other AI techniques have been applied to tac-
tical decision making in StarCraft. Synnaeve and
Bessière (2011b) combine unit objectives, opportuni-
ties, and threats using a Bayesian model to decide
which direction to move units in a battle. The mod-
el treats each of its sensory inputs as part of a proba-

bility equation that can be solved, given data (poten-
tially learned through RL) about the distributions of
the inputs with respect to the direction moved, to
find the probability that a unit should move in each
possible direction. The best direction can be selected,
or the direction probabilities can be sampled over to
avoid having two units choose to move into the same
location. Their Bayesian model is paired with a hier-
archical finite state machine to choose different sets
of behavior for when units are engaging or avoiding
enemy forces, or scouting. The bot produced was very
effective against the built-in StarCraft AI as well as its
own ablated versions (Synnaeve and Bessière 2011b).

CBR, although usually used for strategic reasoning
in RTS AI, has also been applied to tactical decision
making in Warcraft III,9 a game that has a greater
focus on micromanagement than StarCraft
(Szczepanski and Aamodt 2009). CBR generally
selects the most similar case for reuse, but Szczepan-
ski and Aamodt (2009) added a conditional check to
each case so that it could be selected only when its
action was able to be executed. They also added reac-
tionary cases that would be executed as soon as cer-
tain conditions were met. The resulting agent was
able to beat the built in AI of Warcraft III in a micro-
management battle using only a small number of cas-
es, and was able to assist human players by micro-
managing battles to let the human focus on
higher-level strategy.

Neuroevolution is a technique that uses an evolu-
tionary algorithm to create or train an artificial neu-
ral network. Gabriel, Negru, and Zaharie (2012) use a
neuroevolution approach called rtNEAT to evolve
both the topology and connection weights of neural
networks for individual unit control in StarCraft. In
their approach, each unit has its own neural network
that receives input from environmental sources (such
as nearby units or obstacles) and hand-defined
abstractions (such as the number, type, and quality
of nearby units), and outputs whether to attack,
retreat, or move left or right. During a game, the per-
formance of the units is evaluated using a hand-craft-
ed fitness function, and poorly performing unit
agents are replaced by combinations of the best-per-
forming agents. It is tested in very simple scenarios of
12 versus 12 units in a square arena, where all units
on each side are either a hand-to-hand or  ranged
type unit. In these situations, it learns to beat the
built-in StarCraft AI and some other bots. However, it
remains unclear how well it would cope with more
units or mixes of different unit types (Gabriel, Negru,
and Zaharie 2012).

Strategic Decision Making
In order to create a system that can make intelligent
actions at a strategic level in an RTS game, many
researchers have created planning systems. These sys-
tems are capable of determining sequences of actions
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to be taken in a particular situation in order to
achieve specified goals. It is a challenging problem
because of the incomplete information available —
“fog of war” obscures areas of the battlefield that are
out of sight of friendly units — as well as the huge
state and action spaces and many simultaneous non-
hierarchical goals. With planning systems,
researchers hope to enable AI to play at a humanlike
level, while simultaneously reducing the develop-
ment effort required when compared with the script-
ing commonly used in industry. The main tech-
niques used for planning systems are case-based
planning (CBP), goal-driven autonomy (GDA) and
hierarchical planning.

A basic strategic decision-making system was pro-
duced in-house for the commercial RTS game Kohan
II: Kings of War10 (Dill 2006). It assigned resources —
construction, research, and upkeep capacities — to
goals, attempting to maximize the total priority of
the goals that could be satisfied. The priorities were
set by a large number of hand-tuned values, which
could be swapped for a different set to give the AI dif-
ferent personalities (Dill 2006). Each priority value
was modified based on relevant factors of the current
situation, a goal commitment value (to prevent flip-
flopping once a goal has been selected) and a random
value (to reduce predictability). It was found that this
not only created a fun, challenging opponent, but
also made the AI easier to update for changes in game
design throughout the development process (Dill
2006).

Case-Based Planning
CBP is a planning technique that finds similar past
situations from which to draw potential solutions to
the current situation. In the case of a CBP system, the
solutions found are a set of potential plans or sub-
plans that are likely to be effective in the current sit-
uation. CBP systems can exhibit poor reactivity at the
strategic level and excessive reactivity at the action
level, not reacting to high-level changes in situation
until a low-level action fails, or discarding an entire
plan because a single action failed (Palma et al. 2011).

One of the first applications of CBP to RTS games
was by Aha, Molineaux, and Ponsen (2005), who cre-
ated a system that extended the dynamic scripting
concept of Ponsen et al. (2005) to select tactics and
strategy based on the current situation. Using this
technique, their system was able to play against a
nonstatic opponent instead of requiring additional
training each time the opponent changed. They
reduced the complexity of the state and action spaces
by abstracting states into a state lattice of possible
orders in which buildings are constructed in a game
(build orders) combined with a small set of features,
and abstracting actions into a set of tactics generated
for each state. This allowed their system to improve
its estimate of the performance of each tactic in each
situation over multiple games, and eventually learn

to consistently beat all of the tested opponent scripts
(Aha, Molineaux, and Ponsen 2005).

Ontañón et al. (2007) use the ideas of behaviors,
goals, and alive-conditions from A Behavior Lan-
guage (ABL, introduced by Mateas and Stern [2002])
combined with the ideas from earlier CBP systems to
form a case-based system for playing Wargus. The
cases are learned from human-annotated game logs,
with each case detailing the goals a human was
attempting to achieve with particular sequences of
actions in a particular state. These cases can then be
adapted and applied in-game to attempt to change
the game state. By reasoning about a tree of goals
and subgoals to be completed, cases can be selected
and linked together into plan to satisfy the overall
goal of winning the game (figure 5).

During the execution of a plan, it may be modified
in order to adapt for unforeseen events or compen-
sate for a failure to achieve a goal.

Mishra, Ontañón, and Ram (2008) extend the
work of Ontañón et al. (2007) by adding a decision
tree model to provide faster and more effective case
retrieval. The decision tree is used to predict a high-
level situation, which determines the attributes and
attribute weights to use for case selection. This helps
by skipping unnecessary attribute calculations and
comparisons, and emphasizing important attributes.
The decision tree and weightings are learned from
game logs that have been human annotated to show
the high-level situation at each point throughout the
games. This annotation increased the development
effort required for the AI system but successfully pro-
vided better and faster case retrieval than the original
system (Mishra, Ontañón, and Ram 2008).

More recent work using CBP tends to focus on the
learning aspects of the system instead of the plan-
ning aspects. As such, it is discussed further in the
Plan Recognition and Learning section.

A different approach is taken by Cadena and Gar-
rido (2011), who combine the ideas of CBR with
those of fuzzy sets, allowing the reasoner to abstract
state information by grouping continuous feature
values. This allows them to vastly simplify the state
space, and it may be a closer representation of
human thinking, but could potentially result in the
loss of important information. For strategic decision
making, their system uses regular cases made up of
exact unit and building counts, and selects a plan
made up of five high-level actions, such as creating
units or buildings. But for tactical reasoning (micro-
management is not explored), their system main-
tains independent fuzzy state descriptions and car-
ries out independent CBR for each region of the
map, thus avoiding reasoning about the map as a
whole at the tactical level. Each region’s state
includes a linguistic fuzzy representation of its area
(for example, small, medium, big), choke points,
military presence, combat intensity, lost units, and
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amounts of each friendly and enemy unit type (for
example, none, few, many). After building the case
base from just one replay of a human playing against
the in-built AI, the system was able to win around 60
percent of games (and tie in about 15 percent) against
the AI on the same map. However, it is unclear how
well the system would fare at the task of playing
against different races (unique playable teams) and
strategies, or playing on different maps.

Hierarchical Planning
By breaking up a problem hierarchically, planning
systems are able to deal with parts of the situation
separately at different levels of abstraction, reducing
the complexity of the problem, but creating a poten-
tial new issue in coordination between the different
levels (Marthi et al. 2005; Weber et al. 2010). A hier-
archical plan maps well to the hierarchy of goals and
subgoals typical in RTS games, from the highest-lev-
el goals such as winning the game, to the lowest-lev-
el goals, which map directly to in-game actions.
Some researchers formalize this hierarchy into the
well-defined structure of a hierarchical task network
(HTN), which contains tasks, their ordering, and
methods for achieving them. High-level, complex
tasks in an HTN may be decomposed into a sequence
of simpler tasks, which themselves can be decom-
posed until each task represents a concrete action
(Muñoz-Avila and Aha 2004).

HTNs have been used for strategic decision mak-
ing in RTS games, but not for StarCraft. Muñoz-Avi-
la and Aha (2004) focus on the explanations that an
HTN planner is able to provide to a human querying
its behavior, or the reasons underlying certain
events, in the context of an RTS game. Laagland
(2008) implements and tests an agent capable of
playing an open source RTS called Spring11 using a

hand-crafted HTN. The HTN allows the agent to
react dynamically to problems, such as rebuilding a
building that is lost or gathering additional
resources of a particular type when needed, unlike
the built-in scripted AI. Using a balanced strategy,
the HTN agent usually beats the built-in AI in
Spring, largely due to better resource management.
Efforts to learn HTNs, such as Nejati, Langley, and
Konik (2006), have been pursued in much simpler
domains, but never directly used in the field of RTS
AI. This area may hold promise in the future for
reducing the work required to build HTNs.

An alternative means of hierarchical planning was
used by Weber et al. (2010). They use an active
behavior tree in A Behavior Language, which has
parallel, sequential, and conditional behaviors and
goals in a tree structure (figure 6) very similar to a
behavior tree (discussed in the next subsection).
However, in this model, the tree is expanded during
execution by selecting behaviors (randomly, or based
on conditions or priority) to satisfy goals, and differ-
ent behaviors can communicate indirectly by read-
ing or writing information on a shared whiteboard.

Hierarchical planning is often combined as part of
other methods, such as how Ontañón et al. (2007)
use a hierarchical CBP system to reason about goals
and plans at different levels.

Behavior Trees
Behavior trees are hierarchies of decision and action
nodes that are commonly used by programmers and
designers in the game industry in order to define
behaviors (effectively a partial plan) for agents (Palma
et al. 2011). They have become popular because,
unlike scripts, they can be created and edited using
visual tools, making them much more accessible and
understandable to nonprogrammers (Palma et al.
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2011). Additionally, their hierarchical structure en-
courages reuse, as a tree defining a specific behavior
can be attached to another tree in multiple positions
or can be customized incrementally by adding nodes
(Palma et al. 2011). Because behavior trees are hierar-
chical, they can cover a wide range of behavior, from
very low-level actions to strategic-level decisions. Pal-
ma et al. (2011) use behavior trees to enable direct
control of a case-based planner’s behavior. With their
system, machine learning can be used to create com-
plex and robust behavior through the planner, while
allowing game designers to change specific parts of
the behavior by substituting a behavior tree instead
of an action or a whole plan. This means they can
define custom behavior for specific scenarios, fix
incorrectly learned behavior, or tweak the learned
behavior as needed.

Goal-Driven Autonomy
GDA is a model in which “an agent reasons about its
goals, identifies when they need to be updated, and
changes or adds to them as needed for subsequent
planning and execution” (Molineaux, Klenk, and
Aha 2010). This addresses the high- and low-level
reactivity problem experienced by CBP by actively

reasoning about and reacting to why a goal is suc-
ceeding or failing.

Weber, Mateas, and Jhala (2010) describe a GDA
system for StarCraft using A Behavior Language,
which is able to form plans with expectations about
the outcome. If an unexpected situation or event
occurs, the system can record it as a discrepancy,
generate an explanation for why it occurred, and
form new goals to revise the plan, allowing the sys-
tem to react appropriately to unforeseen events (fig-
ure 7). It is also capable of simultaneously reasoning
about multiple goals at differing granularity. It was
initially unable to learn goals, expectations, or strate-
gies, so this knowledge had to be input and updated
manually, but later improvements allowed these to
be learned from demonstration (discussed in the
next section) (Weber, Mateas, and Jhala 2012). This
system was used in the Artificial Intelligence and
Interactive Digital Entertainment (AIIDE) StarCraft
AI competition entry EISBot and was also evaluated
by playing against human players on a competitive
StarCraft ladder called International Cyber Cup
(ICCup),12 where players are ranked based on their
performance — it attained a ranking indicating it
was better than 48 percent of the competitive play-

Figure 6. A Simple Active Behavior Tree Used for Hierarchical Planning.

The figure shows mental acts (calculation or processing), physical acts (in-game actions), and an unexpanded goal. Adapted from Weber et
al. (2010).
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ers (Weber, Mateas, and Jhala 2010; Weber et al.
2010).

Jaidee, Muñoz-Avila, and Aha (2011) integrate
CBR and RL to make a learning version of GDA,
allowing their system to improve its goals and
domain knowledge over time. This means that less
work is required from human experts to specify pos-
sible goals, states, and other domain knowledge
because missing knowledge can be learned automat-
ically. Similarly, if the underlying domain changes,
the learning system is able to adapt to the changes
automatically. However, when applied to a simple

domain, the system was unable to beat the perform-
ance of a nonlearning GDA agent (Jaidee, Muñoz-
Avila, and Aha 2011).

State Space Planning
Automated planning and scheduling is a branch of
classic AI research from which heuristic state space
planning techniques have been adapted for plan-
ning in RTS game AI. In these problems, an agent is
given a start and goal state, and a set of actions that
have preconditions and effects. The agent must then
find a sequence of actions to achieve the goal from
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Figure 7. GDA Conceptual Model.

A planner produces actions and expectations from goals, and unexpected outcomes result in additional goals being produced (Weber,
Mateas, and Jhala 2012).
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the starting state. Existing RTS applications add com-
plexity to the basic problem by dealing with durative
and parallel actions, integer-valued state variables,
and tight time constraints.

Automated planning ideas have already been
applied successfully to commercial first-person shoot-
er (FPS) games within an architecture called Goal-Ori-
ented Action Planning (GOAP). GOAP allows agents
automatically to select the most appropriate actions
for their current situation in order to satisfy a set of
goals, ideally resulting in more varied, complex, and
interesting behavior, while keeping code more
reusable and maintainable (Orkin 2004). However,
GOAP requires a large amount of domain engineer-
ing to implement and is limited because it maps
states to goals instead of to actions, so the planner
cannot tell whether achieving goals is going accord-
ing to the plan, failing, or has failed (Orkin 2004;
Weber, Mateas, and Jhala 2010). Furthermore, Cham-
pandard13 states that GOAP has now turned out to be
a dead end, as academe and industry have moved
away from GOAP in favor of hierarchical planners to
achieve better performance and code maintainabili-
ty.

However, Chan et al. (2007) and Churchill and
Buro (2011) use an automated planning-based
approach similar to GOAP to plan build orders in RTS
games. Unlike GOAP, they are able to focus on a sin-
gle goal: finding a plan to build a desired set of units
and buildings in a minimum duration (makespan).
The RTS domain is simplified by abstracting resource
collection to an income rate per worker, assuming
building placement and unit movement takes a con-
stant amount of time, and completely ignoring oppo-
nents. Ignoring opponents is fairly reasonable for the
beginning of a game, as there is generally little oppo-

nent interaction, and doing so means the planner
does not have to deal with uncertainty and external
influences on the state. Both of these methods still
require expert knowledge to provide a goal state for
them to pursue.

The earlier work by Chan et al. (2007) uses a com-
bination of means-ends analysis and heuristic sched-
uling in Wargus. Means-ends analysis produces a
plan with a minimal number of actions required to
achieve the goal, but this plan usually has a poor
makespan because it doesn’t consider concurrent
actions or actions that produce greater resources. A
heuristic scheduler then reorganizes actions in the
plan to start each action as soon as possible, adding
concurrency and reducing the makespan. To consid-
er producing additional resources, the same process
is repeated with an extra goal for producing more of
a resource (for each resource) at the beginning of the
plan, and the plan with the shortest makespan is
used. The resulting plans, though nonoptimal, were
found to be similar in length to plans executed by an
expert player, and vastly better than plans generated
by state-of-the-art general purpose planners (Chan et
al. 2007).

Churchill and Buro (2011) improve upon the ear-
lier work by using a branch-and-bound depth-first
search to find optimal build orders within an
abstracted simulation of StarCraft. In addition to the
simplifications mentioned above, they avoid simu-
lating individual time steps by allowing any action
that will eventually complete without further player
interaction, and jumping directly to the point at
which each action completes for the next decision
node. Even so, other smaller optimizations were
needed to speed up the planning process enough to
use in-game. The search used either the gathering
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Figure 8. Design of a Chromosome for Evolving RTS Game AI Strategies.
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time or the build time required to reach the goal
(whichever was longer) as the lower bound, and a
random path to the goal as the upper bound
(Churchill and Buro 2011). The system was evaluat-
ed against professional build orders seen in replays,
using the set of units and buildings owned by the
player at a particular time as the goal state. Due to
the computational cost of planning later in the
game, planning was restricted to 120 seconds ahead,
with replanning every 30 seconds. This produced
shorter or equal-length plans to the human players at
the start of a game, and similar-length plans on aver-
age (with a larger variance) later in the game. It
remains to be seen how well this method would per-
form for later stages of the game, as only the first 500
seconds were evaluated and searching took signifi-
cantly longer in the latter half. However, this appears
to be an effective way to produce near-optimal build
orders for at least the early to middle game of Star-
Craft (Churchill and Buro 2011).

Evolutionary Algorithms
Evolutionary algorithms search for an effective solu-
tion to a problem by evaluating different potential
solutions and combining or randomizing compo-
nents of high-fitness potential solutions to find new,
better solutions. This approach is used infrequently
in the RTS Game AI field, but it has been effectively
applied to the subproblem of tactical decision mak-
ing in StarCraft (discussed earlier) and learning
strategic knowledge in similar RTS titles.

Although evolutionary algorithms have not yet
been applied to strategic decision making in Star-
Craft, they have been applied to its sequel, StarCraft
II.14 The Evolution Chamber15 software uses the tech-
nique to optimize partially defined build orders. Giv-
en a target set of units, buildings, and upgrades to be
produced by certain times in the match, the software
searches for the fastest or least resource-intensive way
of reaching these targets. Although there have not
been any academic publications regarding this soft-
ware, it gained attention by producing an unusual
and highly effective plan in the early days of Star-
Craft II.

Ponsen et al. (2005) use evolutionary algorithms to
generate strategies in a game of Wargus. To generate
the strategies, the evolutionary algorithm combines
and mutates sequences of tactical and strategic-level
actions in the game to form scripts (figure 8) that
defeat a set of human-made and previously evolved
scripts. The fitness of each potential script is evaluat-
ed by playing it against the predefined scripts and
using the resulting in-game military score combined
with a time factor that favors quick wins or slow loss-
es. Tactics are extracted as sequences of actions from
the best scripts, and are finally used in a dynamic
script that chooses particular tactics to use in a given
state, based on its experience of their effectiveness —
a form of RL. The resulting dynamic scripts are able

to consistently beat most of the static scripts they
were tested against after learning for approximately
15 games against that opponent, but were unable to
consistently beat some scripts after more than 100
games (Ponsen et al. 2005; 2006). A drawback of this
method is that the effectiveness values learned for
the dynamic scripts assume that the opponent is stat-
ic and would not adapt well to a dynamic opponent
(Aha, Molineaux, and Ponsen 2005).

Cognitive Architectures
An alternative method for approaching strategic-lev-
el RTS game AI is to model a reasoning mechanism
on how humans are thought to operate. This could
potentially lead toward greater understanding of how
humans reason and allow us to create more human-
like AI. This approach has been applied to StarCraft as
part of a project using the Soar cognitive architecture,
which adapts the BWAPI interface to communicate
with a Soar agent.16 It makes use of Soar’s spatial visu-
al system to deal with reconnaissance activities and
pathfinding, and Soar’s working memory to hold per-
ceived and reasoned state information. However, it is
currently limited to playing a partial game of Star-
Craft, using only the basic barracks and marine units
for combat, and using hard-coded locations for build-
ing placement.16

A similar approach was taken by Wintermute, Xu,
and Laird (2007), but it applied Soar to ORTS instead
of StarCraft. They were able to interface the Soar cog-
nitive architecture to ORTS by reducing the com-
plexity of the problem using the concepts of group-
ing and attention for abstraction. These concepts are
based on human perception, allowing the underlying
Soar agent to receive information as a human would,
postperception — in terms of aggregated and filtered
information. The agent could view entire armies of
units as a single entity, but could change the focus of
its attention, allowing it to perceive individual units
in one location at a time, or groups of units over a
wide area (figure 9). This allowed the agent to control
a simple strategic-level RTS battle situation without
being overwhelmed by the large number of units
(Wintermute, Xu, and Laird 2007). However, due to
the limitations of Soar, the agent could pursue only
one goal at a time, which would be very limiting in
StarCraft and most complete RTS games.

Spatial Reasoning
RTS AI agents have to be able to reason about the
positions and actions of often large numbers of hid-
den objects, many with different properties, moving
over time, controlled by an opponent in a dynamic
environment (Weber, Mateas, and Jhala 2011b; Win-
termute, Xu, and Laird 2007). Despite the complexi-
ty of the problem, humans can reason about this
information very quickly and accurately, often pre-
dicting and intercepting the location of an enemy
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attack or escape based on very little information, or
using terrain features and the arrangement of their
own units and buildings to their advantage. This
makes RTS a highly suitable domain for spatial rea-
soning research in a controlled environment (Buro
2004; Weber, Mateas, and Jhala 2011a; Wintermute,
Xu, and Laird 2007).

Even the analysis of the terrain in RTS games,
ignoring units and buildings, is a nontrivial task. In
order to play effectively, players need to be able to
know which regions of the terrain are connected to
other regions, and where and how these regions con-
nect. The connections between regions are as impor-
tant as the regions themselves, because they offer
defensive positions through which an army must
move to get into or out of the region (choke points).
Perkins (2010) describes the implementation and
testing of the Brood War Terrain Analyzer, which has
become a very common library for creating StarCraft
bots capable of reasoning about their terrain. The
library creates and prunes a Voronoi diagram using
information about the walkable tiles of the map,
identifies nodes as regions or choke points, then
merges adjacent regions according to thresholds that
were determined by trial and error to produce the

desired results. The choke point nodes are converted
into lines that separate the regions, resulting in a set
of region polygons connected by choke points (fig-
ure 10). When compared against the choke points
identified by humans, it had a 0–17 percent false
negative rate, and a 4–55 percent false positive rate,
and took up to 43 seconds to analyze the map, so
there is still definite room for improvement (Perkins
2010).

Once a player is capable of simple reasoning about
the terrain, it is possible to begin reasoning about the
movement of units over this terrain. A particularly
useful spatial reasoning ability in RTS games is to be
able to predict the location of enemy units while
they are not visible to a player. Weber, Mateas, and
Jhala (2011b) use a particle model for predicting ene-
my unit positions in StarCraft, based on the unit’s
trajectory and nearby choke points at the time it was
seen. A single particle was used for each unit instead
of a particle cloud because it is not possible to visu-
ally distinguish between two units of the same type,
so it would be difficult to update the cloud if a unit
was lost then resighted (Weber, Mateas, and Jhala
2011b). In order to account for the differences
between the unit types in StarCraft, they divided the
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Figure 9. Attention Limits the Information the Agent Receives by 
Hiding or Abstracting Objects Further from the Agent’s Area of Focus. 
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types into broad classes and learned a movement
model for each class from professional replays on a
variety of maps. The model allowed their bot to pre-
dict, with decreasing confidence over time, the sub-
sequent locations of enemy units after sighting them,
resulting in an increased win rate against other bots
(Weber, Mateas, and Jhala 2011b).

The bulk of spatial reasoning research in StarCraft
and other RTS games is based on potential fields
(PFs), and to a lesser extent, influence maps. Each of
these techniques help to aggregate and abstract spa-
tial information by summing the effect of individual
points of information into a field over an area, allow-

ing decisions to be made based on the computed field
strength at particular positions. They were first
applied to RTS games by Hagelbäck and Johansson
(2008), before which they were used for robot navi-
gation. Kabanza et al. (2010) use an influence map to
evaluate the potential threats and opportunities of an
enemy force in an effort to predict the opponent’s
strategy, and Uriarte and Ontañón (2012) use one to
evaluate threats and obstacles in order to control the
movement of units performing a hit-and-run behav-
ior known as kiting. Baumgarten, Colton, and Morris
(2009) use a few different influence maps for syn-
chronizing attacks by groups of units, moving and
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Figure 10. Terrain After Analysis.

The figure shows impassable areas in blue and choke points as lines between light areas (Perkins 2010).



grouping units, and choosing targets to attack. Weber
and Ontañón (2010) use PFs to aid a CBP system by
taking the field strengths of many different fields at a
particular position, so that the position is represent-
ed as a vector of field strengths, and can be easily
compared to others stored in the case base. Synnaeve
and Bessière (2011b) claim that their Bayesian mod-
el for unit movement subsumes PFs, as each unit is
controlled by Bayesian sensory inputs that are capa-
ble of representing threats and opportunities in dif-
ferent directions relative to the unit. However, their
system still needs to use damage maps in order to
summarize this information for use by the sensory
inputs (Synnaeve and Bessière 2011b).

PFs were used extensively in the Overmind Star-
Craft bot, for both offensive and defensive unit
behavior (Huang 2011). The bot used the fields to
represent opportunities and threats represented by
known enemy units, using information about unit
statistics so that the system could estimate how ben-
eficial and how costly it would be to attack each tar-
get. This allowed attacking units to treat the fields as
attractive and repulsive forces for movement, result-
ing in them automatically congregating on high-val-
ue targets and avoiding defenses.

Additionally, the PFs were combined with tempo-
ral reasoning components, allowing the bot to con-
sider the time cost of reaching a faraway target, and
the possible movement of enemy units around the
map, based on their speed and visibility. The result-
ing threat map was used for threat-aware pathfind-
ing, which routed units around more threatening
regions of the map by giving movement in threat-
ened areas a higher path cost. The major difficulty
they experienced in using PFs so much was in tuning
the strengths of the fields, requiring them to train the
agent in small battle scenarios in order to find appro-
priate values (Huang 2011). To the authors’ knowl-
edge, this is the most sophisticated spatial reasoning
that has been applied to playing StarCraft.

Plan Recognition and Learning
A major area of research in the RTS game AI literature
involves learning effective strategic-level game play.
By using an AI system capable of learning strategies,
researchers aim to make computer opponents more
challenging, dynamic, and humanlike, while making
them easier to create (Hsieh and Sun 2008). StarCraft
is a very complex domain to learn from, so it may
provide insights into learning to solve real-world
problems. Some researchers have focused on the sub-
problem of determining an opponent’s strategy,
which is particularly difficult in RTS games due to
incomplete information about the opponent’s
actions, hidden by the “fog of war” (Kabanza et al.
2010). Most plan recognition makes use of an exist-
ing plan library to match against when attempting to
recognize a strategy, but some methods allow for plan

recognition without any predefined plans (Cheng
and Thawonmas 2004; Synnaeve and Bessière
2011a). Often, data is extracted from the widely
available replays files of expert human players, so a
data set was created in order to reduce repeated work
(Synnaeve and Bessière 2012). This section divides
the plan recognition and learning methods into
deductive, abductive, probabilistic, and case-based
techniques. Within each technique, plan recogni-
tion can be either intended — plans are denoted for
the learner and there is often interaction between
the expert and the learner — or keyhole — plans are
indirectly observed and there is no two-way interac-
tion between the expert and the learner.

Deductive
Deductive plan recognition identifies a plan by com-
paring the situation with hypotheses of expected
behavior for various known plans. By observing par-
ticular behavior a deduction can be made about the
plan being undertaken, even if complete knowledge
is not available. The system described by Kabanza et
al. (2010) performs intended deductive plan recogni-
tion in StarCraft by matching observations of its
opponent against all known strategies that could
have produced the situation. It then simulates the
possible plans to determine expected future actions
of its opponent, judging the probability of plans
based on new observations and discarding plans that
do not match (figure 11). The method used requires
significant human effort to describe all possible plans
in a decision tree type structure (Kabanza et al. 2010).

The decision tree machine learning method used
by Weber and Mateas (2009) is another example of
intended deductive plan recognition. Using training
data of building construction orders and timings
that have been extracted from a large selection of
StarCraft replay files, it creates a decision tree to pre-
dict which midgame strategy is being demonstrated.
The replays are automatically given their correct clas-
sification through a rule set based upon the build
order. The learning process was also carried out with
a nearest neighbor algorithm and a nonnested gen-
eralized exemplars algorithm. The resulting models
were then able to predict the build order from
incomplete information, with the nearest neighbor
algorithm being most robust to incomplete informa-
tion (Weber and Mateas 2009).

Abductive
Abductive plan recognition identifies plans by mak-
ing assumptions about the situation that are suffi-
cient to explain the observations. The GDA system
described by Weber, Mateas, and Jhala (2010) is an
example of intended abductive plan recognition in
StarCraft, where expectations are formed about the
result of actions, and unexpected events are account-
ed for as discrepancies. The planner handles discrep-
ancies by choosing from a set of predefined explana-
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tions that give possible reasons for discrepancies and
create new goals to compensate for the change in
assumed situation. This system required substantial
domain engineering in order to define all of the pos-
sible goals, expectations, and explanations necessary
for a domain as complex as StarCraft.

Later work added the ability for the GDA system to
learn domain knowledge for StarCraft by analyzing
replays offline (Weber, Mateas, and Jhala 2012). In
this modified system, a case library of sequential
game states was built from the replays, with each case
representing the player and opponent states as

numerical feature vectors. Then case-based goal for-
mulation was used to produce goals at run time. The
system forms predictions of the opponent’s future
state (referred to as explanations in the article) by
finding a similar opponent state to the current oppo-
nent state in the case library, looking at the future of
the similar state to find the difference in the feature
vectors over a set period of time, and then applying
this difference to the current opponent state to pro-
duce an expected opponent state. In a similar man-
ner, it produces a goal state by finding the expected
future player state, using the predicted opponent
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Figure 11. New Observations Update an Opponent’s Possible Plan Execution Statuses to 
Determine Which Plans Are Potentially Being Followed.

(Kabanza et al. 2010).
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state instead of the current state in order to find
appropriate reactions to the opponent. Expectations
are also formed from the case library, using changes
in the opponent state to make predictions about
when new types of units will be produced. When an
expectation is not met (within a certain tolerance for
error), a discrepancy is created, triggering the system
to formulate a new goal. The resulting system
appeared to show better results in testing than the
previous ones, but further testing is needed to deter-
mine how effectively it adapts to unexpected situa-
tions (Weber, Mateas, and Jhala 2012).

Probabilistic
Probabilistic plan recognition makes use of statistics
and expected probabilities to determine the most
likely future outcome of a given situation. Synnaeve
and Bessière (2011a), Dereszynski et al. (2011), and
Hostetler et al. (2012) carry out keyhole probabilistic
plan recognition in StarCraft by examining build
orders from professional replays, without any prior
knowledge of StarCraft build orders. This means they
should require minimal work to adapt to changes in
the game or to apply to a new situation, because they
can learn directly from replays without any human
input. The models learned can then be used to pre-
dict unobserved parts of the opponent’s current state,
or the future strategic direction of a player, given the
player’s current and past situations. Alternatively,
they can be used to recognize an unusual strategy
being used in a game. The two approaches differ in
the probabilistic techniques that are used, the scope
in which they are applied, and the resulting predic-
tive capabilities of the systems.

Dereszynski et al. (2011) use hidden Markov mod-
els to model the player as progressing through a
series of states, each of which has probabilities for
producing each unit and building type, and proba-
bilities for which state will be transitioned to next.
The model is applied to one of the sides in just one
of the six possible race matchups, and to only the
first seven minutes of game play, because strategies
are less dependent on the opponent at the start of
the game. State transitions happen every 30 seconds,
so the timing of predicted future events can be easi-
ly found, but it is too coarse to capture the more fre-
quent events, such as building new worker units.
Without any prior information, it is able to learn a
state transition graph that closely resembles the
commonly used opening build orders (figure 12), but
a thorough analysis and evaluation of its predictive
power is not provided (Dereszynski et al. 2011).

Hostetler et al. (2012) extend previous work by
Dereszynski et al. (2011) using a dynamic Bayesian
network model for identifying strategies in StarCraft.
This model explicitly takes into account the recon-
naissance effort made by the player — measured by
the proportion of the opponent’s main base that has
been seen — in order to determine whether a unit or
building was not seen because it was not present, or
because little effort was made to find it. This means
that failing to find a unit can actually be very inform-
ative, provided enough effort was made. The model is
also more precise than prior work, predicting exact
counts and production of each unit and building
type each 30-second time period, instead of just pres-
ence or absence. Production of units and buildings
each time period is dependent on the current state,
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Figure 12. State Transition Graph.

As learned in Dereszynski et al. (2011), showing transitions with probability at least 0.25 as solid edges, and higher-probability transitions
with thicker edges. Dotted edges are low-probability transitions shown to make all nodes reachable. Labels in each state are likely units to
be produced, while labels outside states are a human analysis of the strategy exhibited. (Dereszynski et al. 2011).
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based on a hidden Markov model as in Dereszynski et
al. (2011). Again, the model was trained and applied
to one side in one race matchup, and results are
shown for just the first seven minutes of game play.
For predicting unit quantities, it outperforms a base-
line predictor, which simply predicts the average for
the given time period, but only after reconnaissance
has begun. This highlights a limitation of the model:
it cannot differentiate easily between sequential time
periods with similar observations, and therefore has
difficulty making accurate predictions for during and
after such periods. This happens because the similar
periods are modeled as a single state that has a high
probability of transitioning to the same state in the
next period. For predicting technology structures, the
model seems to generally outperform the baseline,
and in both prediction tasks it successfully incorpo-
rates negative information to infer the absence of
units (Hostetler et al. 2012).

Synnaeve and Bessière (2011a) carry out a similar
process using a Bayesian model instead of a hidden
Markov model. When given a set of thousands of
replays, the Bayesian model learns the probabilities
of each observed set of buildings existing at one-sec-
ond intervals throughout the game. These timings
for each building set are modeled as normal distribu-
tions, such that few or widely spread observations
will produce a large standard deviation, indicating
uncertainty (Synnaeve and Bessière 2011a). Given a
(partial) set of observations and a game time, the
model can be queried for the probabilities of each
possible building set being present at that time. Alter-
natively, given a sequence of times, the model can be
queried for the most probable building sets over
time, which can be used as a build order for the agent
itself (Synnaeve and Bessière 2011a).

The model was evaluated and shown to be robust
to missing information, producing a building set
with a little over one building wrong, on average,
when 80 percent of the observations were randomly
removed. Without missing observations and allow-
ing for one building wrong, it was able to predict
almost four buildings into the future, on average
(Synnaeve and Bessière 2011a).

Case Based
Case-based plan recognition may also be carried out
using case-based reasoning as a basis. CBR works by
storing cases that represent specific knowledge of a
problem and solution, and comparing new problems
to past cases in order to adapt and reuse past solu-
tions (Aamodt and Plaza 1994). It is commonly used
for learning strategic play in RTS games because it
can capture complex, incomplete situational knowl-
edge gained from specific experiences to attempt to
generalize about a very large problem space, without
the need to transform the data (Aamodt and Plaza
1994; Floyd and Esfandiari 2009; Sánchez-Pelegrín,
Gómez-Martín, and Díaz-Agudo 2005).

Hsieh and Sun (2008) use CBR to perform keyhole
recognition of build orders in StarCraft by analyzing
replays of professional players, similar to Synnaeve
and Bessière (2011a) above. Hsieh and Sun (2008) use
the resulting case base to predict the performance of
a build order by counting wins and losses seen in the
professional replays, which allows the system to pre-
dict which build order is likely to be more successful
in particular situations.

In RTS games, CBR is often used not only for plan
recognition but also as part of a more general method
for learning actions and the situations in which they
should be applied. An area of growing interest for
researchers involves learning to play RTS games from
a demonstration of correct behavior. These learning
from demonstration techniques often use CBR and
CBP, but they are discussed in their own section,
which follows.

Although much of the recent work using CBR for
RTS games learns from demonstration, Baumgarten,
Colton, and Morris (2009) use CBR directly without
observing human play. Their system uses a set of met-
rics to measure performance, in order to learn to play
the strategy game DEFCON17 through an iterative
process similar to RL. The system uses cases of past
games played to simultaneously learn which strate-
gic moves it should make as well as which moves its
opponent is likely to make. It abstracts lower-level
information about unit and structure positions by
using influence maps for threats and opportunities in
an area and by grouping units into fleets and
metafleets. In order for it to make generalizations
about the cases it has stored, it groups the cases sim-
ilar to its current situation using a decision tree algo-
rithm, splitting the cases into more or less successful
games based on game score and hand-picked metrics.
A path through the resulting decision tree is then
used as a plan that is expected to result in a high-scor-
ing game. Attribute values not specified by the select-
ed plan are chosen at random, so the system tries dif-
ferent moves until an effective move is found. In this
way, it can discover new plans from an initially emp-
ty case base.

Learning by Observation
For a domain as complex as RTS games, gathering
and maintaining expert knowledge or learning it
through trial and error can be a very difficult task, but
games can provide simple access to (some of) this
information through replays or traces. Most RTS
games automatically create traces, recording the
events within a game and the actions taken by the
players throughout the game. By analyzing the
traces, a system can learn from the human demon-
stration of correct behavior, instead of requiring pro-
grammers to specify its behavior manually. This
learning solely by observing the expert’s external
behavior and environment is usually called learning
by observation, but is also known as apprenticeship
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learning, imitation learning, behavioral cloning, pro-
gramming by demonstration, and even learning
from demonstration (Ontañón, Montana, and Gon-
zalez 2011). These learning methods are analogous to
the way humans are thought to accelerate learning
through observing an expert and emulating their
actions (Mehta et al. 2009).

Although the concept can be applied to other
areas, learning by observation (as well as learning
from demonstration, discussed in the next section) is
particularly applicable for CBR systems. It can reduce
or remove the need for a CBR system designer to
extract knowledge from experts or think of potential
cases and record them manually (Hsieh and Sun
2008; Mehta et al. 2009). The replays can be trans-
formed into cases for a CBR system by examining the
actions players take in response to situations and
events, or to complete certain predefined tasks.

In order to test the effectiveness of different tech-
niques for learning by observation, Floyd and Esfan-
diari (2009) compared CBR, decision trees, support
vector machines, and naïve Bayes classifiers for a task
based on RoboCup robot soccer.18 In this task, classi-
fiers were given the perceptions and actions of a set
of RoboCup players and were required to imitate
their behavior. There was particular difficulty in
transforming the observations into a form usable by
most of the the classifiers, as the robots had an
incomplete view of the field, so there could be very
few or many objects observed at a given time (Floyd
and Esfandiari 2009). All of the classifiers besides k-
nearest neighbor — the classifier commonly used for
CBR — required single-valued features or fixed-size
feature vectors, so the missing values were filled with
a placeholder item in those classifiers in order to
mimic the assumptions of k-nearest neighbor. Classi-
fication accuracy was measured using the f-measure,
and results showed that the CBR approach outper-
formed all of the other learning mechanisms (Floyd
and Esfandiari 2009). These challenges and results
may explain why almost all research in learning by
observation and learning from demonstration in the
complex domain of RTS games uses CBR as a basis.

Bakkes, Spronck, and van den Herik (2011)
describe a case-based learning by observation system
that is customized to playing Spring RTS games at a
strategic level (figure 13), while the tactical decision
making is handled by a script. In addition to regular
CBR, with cases extracted from replays, they record a
fitness value with each state, so the system can inten-
tionally select suboptimal strategies when it is win-
ning in order to make the game more evenly
matched and more fun to play. This requires a good
fitness metric for the value of a state, which is diffi-
cult to create for an RTS. In order to play effectively,
the system uses hand-tuned feature weights on a cho-
sen set of features, and chooses actions that are
known to be effective against its expected opponent.
The opponent strategy model is found by comparing

observed features of the opponent to those of oppo-
nents in its case base, which are linked to the games
where they were encountered. In order to make case
retrieval efficient for accessing online, the case base
is clustered and indexed with a fitness metric while
offline. After playing a game, the system can add the
replay to its case base in order to improve its knowl-
edge of the game and opponent. A system capable of
controlled adaptation to its opponent like this could
constitute an interesting AI player in a commercial
game (Bakkes, Spronck, and van den Herik 2011).

Learning by observation also makes it possible to
create a domain-independent system that can sim-
ply learn to associate sets of perceptions and actions,
without knowing anything about their underlying
meaning (Floyd and Esfandiari 2010; 2011a). How-
ever, without domain knowledge to guide decisions,
learning the correct actions to take in a given situa-
tion is very difficult. To compensate, the system
must process and analyze observed cases, using tech-
niques like automated feature weighting and case
clustering in order to express the relevant knowl-
edge.

Floyd and Esfandiari (2011a) claim their system is
capable of handling complex domains with partial
information and nondeterminism, and show it to be
somewhat effective at learning to play robot soccer
and Tetris, but it has not yet been applied to a
domain as complex as StarCraft. Their system has
more recently been extended to be able to compare
perceptions based on the entire sequence of percep-
tions — effectively a trace — so that it is not limited
to purely reactive behavior (Floyd and Esfandiari
2011b). In the modified model, each perceived state
contains a link to the previous state, so that when
searching for similar states to the current state, the
system can incrementally consider additional past
states to narrow down a set of candidates. By also
considering the similarity of actions contained in the
candidate cases, the system can stop comparing past
states when all of the candidate cases suggested a
similar action, thereby minimizing wasted process-
ing time. In an evaluation where the correct action
was dependent on previous actions, the updated sys-
tem produced a better result than the original, but it
is still unable to imitate an agent whose actions are
based on a hidden internal state (Floyd and Esfandi-
ari 2011b).

Learning from Demonstration
Instead of learning purely from observing the traces
of interaction of a player with a game, the traces may
be annotated with extra information — often about
the player’s internal reasoning or intentions — mak-
ing the demonstrations easier to learn from, and pro-
viding more control over the particular behaviors
learned. Naturally, adding annotations by hand
makes the demonstrations more time-consuming to
author, but some techniques have been developed to
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automate this process. This method of learning from
constructed examples is known as learning from
demonstration.

Given some knowledge about the actions and tasks
(things that we may want to complete) in a game,
there are a variety of different methods that can be
used to extract cases from a trace for use in learning
by observation or learning from demonstration sys-
tems. Ontañón (2012) provides an overview of sev-
eral different case acquisition techniques, from the
most basic reactive and monolithic learning
approaches to more complex dependency graph
learning and time-span analysis techniques. Reactive
learning selects a single action in response to the cur-
rent situation, while monolithic sequential learning
selects an entire game plan; the first has issues with
preconditions and the sequence of actions, whereas
the second has issues managing failures in its long-
term plan (Ontañón 2012). Hierarchical sequential
learning attempts to find a middle ground by learn-
ing which actions result in the completion of partic-
ular tasks, and which tasks’ actions are subsets of oth-
er tasks’ actions, making them subtasks. That way,
ordering is retained, but when a plan fails it must
only choose a new plan for its current task, instead of
for the whole game (Ontañón 2012).

Sequential learning strategies can alternatively use

dependency graph learning, which uses known pre-
conditions and postconditions, and observed order-
ing of actions, to find a partial ordering of actions
instead of using the total ordered sequence exactly as
observed. However, these approaches to determining
subtasks and dependencies produce more dependen-
cies than really exist, because independent actions or
tasks that coincidentally occur at a similar time will
be considered dependent (Ontañón 2012). The sur-
plus dependencies can be reduced using time-span
analysis, which removes dependencies where the
duration of the action indicates that the second
action started before the first one finished. In an
experimental evaluation against static AI, it was
found that the dependency graph and time-span
analysis improved the results of each strategy they
were applied to, with the best results being produced
by both techniques applied to the monolithic learn-
ing strategy (Ontañón 2012).

Mehta et al. (2009) describe a CBR and planning
system that is able to learn to play the game Wargus
from human-annotated replays of the game (figure
14). By annotating each replay with the goals that the
player was trying to achieve at the time, the system
can group sequences of actions into behaviors to
achieve specific goals, and learn a hierarchy of goals
and their possible orderings. The learned behaviors
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Figure 13. Learning by Observation Applied to an RTS.

Offline processing generalizes observations, initialization chooses an effective strategy, and online adaptation ensures cases are appropri-
ate in the current situation. Adapted from Bakkes, Spronck, and van den Herik (2011).
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are stored in a behavior base that can be used by the
planner to achieve goals while playing the game. This
results in a system that requires less expert program-
mer input to develop a game AI because it may be
trained to carry out goals and behavior (Mehta et al.
2009).

The system described by Weber and Ontañón
(2010) analyzes StarCraft replays to determine the
goals being pursued by the player with each action.
Using an expert-defined ontology of goals, the sys-
tem learns which sequences of actions lead to goals
being achieved, and in which situations these actions
occurred. Thus, it can automatically annotate replays
with the goals being undertaken at each point, and
convert this knowledge into a case base that is usable
in a case-based planning system. The case-based
planning system produced was able to play games of
StarCraft by retrieving and adapting relevant cases,
but was unable to beat the in-built scripted StarCraft
AI. Weber and Ontañón (2010) suggest that the sys-
tem’s capability could be improved using more
domain knowledge for comparing state features and
identifying goals, which would make it more specific
to StarCraft but less generally applicable.

An alternative to analyzing traces is to gather the
cases in real time as the game is being played and the
correct behavior is being demonstrated — known as

online learning. This method has been used to train
particular desired behaviors in robots learning robot
soccer, so that humans could guide the learning
process and apply more training if necessary (Groll-
man and Jenkins 2007). The training of particular
desired behaviors in this way meant that fewer train-
ing examples could be covered, so while the robot
could learn individual behaviors quickly, it required
being set into explicit states for each behavior (Groll-
man and Jenkins 2007). To the authors’ knowledge,
such an approach has not been attempted in RTS
games.

Open Research Areas
As well as the areas covered above, most of which are
actively being researched, there are some areas that
are applicable to RTS AI but seem to have been given
little attention. The first of these areas is found by
examining the use of game AI in industry and how
it differs from academic AI. The next area — multi-
scale AI — has had a few contributions that have yet
to be thoroughly examined, while the third — coop-
eration — is all but absent from the literature. Each
of these three areas raises problems that are chal-
lenging for AI agents, and yet almost trivial for a
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Figure 14. General Architecture for a Learning by Demonstration System. 

Adapted from Mehta et al. (2009).
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human player. The final section notes the inconsis-
tency in evaluation methods between various papers
in the field and calls for a standardized evaluation
method to be put into practice.

Game AI in Industry
Despite the active research in the RTS AI field, there
seems to be a large divide between the academic
research, which uses new, complex AI techniques,
and the games industry, which usually uses older and
much simpler approaches. By examining the differ-
ences in academic and industry use of AI, we see new
opportunities for research that may benefit both
groups.

Many papers reason that RTS AI research will be
useful for new RTS game development by reducing
the work involved in creating AI opponents, or by
allowing game developers to create better AI oppo-
nents (Baekkelund 2006; Dill 2006; Mehta et al.
2009; Ontañón 2012; Ponsen et al. 2005; Tozour
2002; Woodcock 2002). For example, the RTS game
DEFCON was given enhanced, learning AI through
collaboration with the Imperial College of London
(discussed earlier) (Baumgarten, Colton, and Morris
2009). Similarly, Kohan II: Kings of War was pro-
duced with flexible AI through a dynamic goal-selec-
tion mechanism based on complex priority calcula-
tions (discussed earlier) (Dill 2006). More  recently,
the currently in development RTS game Planetary
Annihilation19 is using flow fields for effective unit
pathfinding with large numbers of units, and neural
networks for controlling squads of units.20

In practice, however, there is very low rate of
industry adoption of academic game AI research. It is
typical for industry game producers to specify and
encode manually the exact behavior of their agents
instead of using learning or reasoning techniques
(Mehta et al. 2009; Tozour 2002; Woodcock 2002).
Older techniques such as scripting, finite state
machines, decision trees, and rule-based systems are
still the most commonly used (Ontañón 2012;
Tozour 2002; Woodcock 2002)20 — for example, the
built-in AI of StarCraft uses a static script that choos-
es randomly among a small set of predetermined
behaviors (Huang 2011). These techniques result in
game AI that often has predictable, inflexible behav-
ior, is subject to repeatable exploitation by humans,
and doesn’t learn or adapt to unforeseen situations
or events (Dill 2006; Huang 2011; Ontañón 2012;
Woodcock 2002).

There are two main reasons for this lack of adop-
tion of academic AI techniques. Firstly, there is a
notable difference in goals between academe and
industry. Most academic work focuses on trying to
create rational, optimal agents that reason, learn, and
react, while the industry aims to create challenging
but defeatable opponents that are fun to play against,
usually through entirely predefined behavior (Baum-
garten, Colton, and Morris 2009; Davis 1999; Lidén

2004; Ontañón 2012; Tozour 2002). The two aims are
linked, as players find a game more fun when it is rea-
sonably challenging (Hagelbäck and Johansson
2009),21 but this difference in goals results in very dif-
ferent behavior from the agents. An agent aiming to
play an optimal strategy — especially if it is the same
optimal strategy every game — is unlikely to make a
desirable RTS opponent, because humans enjoy find-
ing and taking advantage of opportunities and oppo-
nent mistakes.22 An optimal agent is also trying to
win at all costs, while the industry really wants game
AI that is aiming to lose the game, but in a more
humanlike way (Davis 1999). 22 Making AI that acts
more humanlike and intelligent — even just in spe-
cific circumstances through scripted behaviors — is
important in the industry as it is expected to make a
game more fun and interesting for the players (Lidén
2004; Scott 2002; Woodcock 2002).

The second major reason for the lack of adoption
is that there is little demand from the games industry
for new AI techniques. Industry game developers do
not view their current techniques as an obstacle to
making game AI that is challenging and fun to play
against, and note that it is difficult to evaluate the
potential of new, untested techniques (Woodcock
2002).20, 22 Industry RTS games often allow AI oppo-
nents to cheat in order to make them more challeng-
ing, or emphasize playing against human opponents
instead of AI (Davis 1999; Laird and van Lent 2001;
Synnaeve and Bessière 2011a). Additionally, game
development projects are usually under severe time
and resource constraints, so trying new AI techniques
is both costly and risky (Buro 2004; Tozour 2002).20

In contrast, the existing techniques are seen as pre-
dictable, reliable, and easy to test and debug (Dill
2006; Baekkelund 2006; Tozour 2002; Woodcock
2002).22 Academic AI techniques are also seen as dif-
ficult to customize, tune, or tweak in order to perform
important custom scripted tasks, which scripted AI is
already naturally suited to doing.20, 22

Some new avenues of research come to light con-
sidering the use of game AI in industry. Most impor-
tantly, creating AI that is more humanlike, which
may also make it more fun to play against. This task
could be approached by making an RTS AI that is
capable of more difficult human interactions. Com-
pared to AI, human players are good at working
together with allies, using surprises, deception, dis-
tractions and coordinated attacks, planning effective
strategies, and changing strategies to become less pre-
dictable (Scott 2002). Players that are able to do at
least some of these things appear to be intelligent and
are more fun for human players to play against (Scott
2002). In addition, being predictable and exploitable
in the same fashion over multiple games means that
human players do not get to find and exploit new
mistakes, removing a source of enjoyment from the
game. AI can even make mistakes and still appear
intelligent as long as the mistake appears plausible in
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the context of the game — the sort of mistakes that a
human would make (Lidén 2004).

An alternative way to create AI that is more
humanlike is to replicate human play styles and
skills. Enabling an AI to replicate particular strategies
— for example a heavily defensive turtle strategy or
heavily offensive rush strategy — would give the AI
more personality and allow players to practice
against particular strategies.22 This concept has been
used in industry AI before (Dill 2006) but may be dif-
ficult to integrate into more complex AI techniques.
A system capable of learning from a human player —
using a technique such as learning from demonstra-
tion (see the section on this topic), likely using
offline optimization — could allow all or part of the
AI to be trained instead of programmed (Floyd and
Esfandiari 2010; Mehta et al. 2009). Such a system
could potentially copy human skills — like unit
micromanagement or building placement — in order
to keep up with changes in how humans play a game
over time, which makes it an area of particular inter-
est to the industry.22

Evaluating whether an RTS AI is humanlike is
potentially an issue. For FPS games, there is an AI
competition, BotPrize,20 for creating the most
humanlike bots (AI players), where the bots are
judged on whether they appear to be a human play-
ing the game — a form of Turing test.24 This test has
finally been passed in 2012, with two bots judged
more likely to be humans than bots for the first time.
Appearing humanlike in an RTS would be an even
greater challenge than in an FPS, as there are more
ways for the player to act and react to every situation,
and many actions are much more visible than the
very fast-paced transient actions of an FPS. However,
being humanlike is not currently a focus of any Star-
Craft AI research, to the authors’ knowledge,
although it has been explored to a very small extent
in the context of some other RTS games. It is also not
a category in any of the current StarCraft AI compe-
titions. The reason for this could be the increased dif-
ficulty of creating a human level agent for RTS games
compared with FPS games, however, it may simply be
due to an absence of goals in this area of game AI
research. A Turing Test similar to BotPrize could be
designed for StarCraft bots by making humans play
in matches and then decide whether their opponent
was a human or a bot. It could be implemented fair-
ly easily on a competitive ladder like ICCup by sim-
ply allowing a human to join a match and asking
them to judge the humanness of their opponent dur-
ing the match. Alternatively, the replay facility in
StarCraft could be used to record matches between
bots and humans of different skill levels, and other
humans could be given the replays to judge the
humanness of each player. Due to the popularity of
StarCraft, expert participants and judges should be
relatively easy to find.

A secondary avenue of research is in creating RTS

AI that is more accessible or useful outside of acad-
eme. This can partially be addressed by simply con-
sidering and reporting how often the AI can be relied
upon to behave as expected, how performant the
system is, and how easily the system can be tested
and debugged. However, explicit research into these
areas could yield improvements that would benefit
both academe and industry. More work could also be
done to investigate how to make complex RTS AI sys-
tems easier to tweak and customize, to produce spe-
cific behavior while still retaining learning or rea-
soning capabilities. Industry feedback indicates it is
not worthwhile to adapt individual academic AI
techniques in order to apply them to individual
games, but it may become worthwhile if techniques
could be reused for multiple games in a reliable fash-
ion. A generalized RTS AI middleware could allow
greater industry adoption — games could be more
easily linked to the middleware and then tested with
multiple academic techniques — as well as a wider
evaluation of academic techniques over multiple
games. Research would be required in order to find
effective abstractions for such a complex and varied
genre of games, and to show the viability of this
approach.

Multiscale AI
Due to the complexity of RTS games, current bots
require multiple abstractions and reasoning mecha-
nisms working in concert in order to play effectively
(Churchill and Buro 2012; Weber et al. 2010; Weber,
Mateas, and Jhala 2011a). In particular, most bots
have separate ways of handling tactical and strategic
level decision making, as well as separately manag-
ing resources, construction, and reconnaissance.
Each of these modules faces an aspect of an interre-
lated problem, where actions taken will have long-
term strategic trade-offs affecting the whole game, so
they cannot simply divide the problem into isolated
or hierarchical problems. A straightforward hierar-
chy of command — like in a real-world military — is
difficult in an RTS because the decisions of the top-
level commander will depend on, and affect, multi-
ple subproblems, requiring an understanding of each
one as well as how they interact. For example,
throughout the game, resources could be spent on
improving the resource generation, training units for
an army, or constructing new base infrastructure,
with each option controlled by a different module
that cannot assess the others’ situations. Notably,
humans seem to be able to deal with these problems
very well through a combination of on- and offline,
reactive, deliberative, and predictive reasoning.

Weber et al. (2010) define the term multiscale AI
problems to refer to these challenges, characterized by
concurrent and coordinated goal pursuit across mul-
tiple abstractions. They go on to describe several dif-
ferent approaches they are using to integrate parts of
their bot. First is a working memory or shared black-
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board concept for indirect communication between
their modules, where each module publishes its cur-
rent beliefs for the others to read. Next, they allow
for goals and plans generated by their planning and
reasoning modules to be inserted into their central
reactive planning system, to be pursued in parallel
with current goals and plans. Finally, they suggest a
method for altered behavior activation, so that mod-
ules can modify the preconditions for defined behav-
iors, allowing them to activate and deactivate behav-
iors based on the situation.

A simpler approach may be effective for at least
some parts of an RTS bot. Synnaeve and Bessière
(2011b) use a higher-level tactical command, such as
scout, hold position, flock, or fight, as one of the
inputs to their micromanagement controller. Simi-
larly, Churchill and Buro (2012) use a hierarchical
structure for unit control, with an overall game com-
mander — the module that knows about the high-
level game state and makes strategic decisions — giv-
ing commands to a macro commander and a combat
commander, each of which give commands to their
subcommanders. Commanders further down the
hierarchy are increasingly focused on a particular
task, but have less information about the overall
game state, so therefore must rely on their parents to
make them act appropriately in the bigger picture.
This is relatively effective because the control of units
is more hierarchically arranged than other aspects of
an RTS. Such a system allows the low-level con-
trollers to incorporate information from their parent
in the hierarchy, but they are unable to react and
coordinate with other low-level controllers directly
in order to perform cooperative actions (Synnaeve
and Bessière 2011b). Most papers on StarCraft AI skirt
this issue by focusing on one aspect of the AI only, as
can be seen in how this review paper is divided into
tactical and strategic decision making sections.

Cooperation
Cooperation is an essential ability in many situa-
tions, but RTS games present a particular complex
environment in which the rules and overall goal are
fixed, and there is a limited ability to communicate
with your cooperative partner(s). It would also be
very helpful in commercial games, as good coopera-
tive players could be used for coaching or team
games. In team games humans often team up to help
each other with coordinated actions throughout the
game, like attacking and defending, even without
actively communicating. Conversely AI players in
most RTS games (including StarCraft) will act seem-
ingly independently of their teammates. A possible
beginning direction for this research could be to
examine some techniques developed for opponent
modeling and reuse them for modeling an ally, thus
giving insight into how the player should act to coor-
dinate with the ally. Alternatively, approaches to
teamwork and coordination used in other domains,

such as RoboCup (Kitano et al. 1998) may be appro-
priate to be adapted or extended for use in the RTS
domain.

Despite collaboration being highlighted as a chal-
lenging AI research problem in Buro (2003), to the
authors’ knowledge just one research publication
focusing on collaborative behavior exists in the
domain of StarCraft (and RTS games in general). Mag-
nusson and Balsasubramaniyan (2012) modified an
existing StarCraft bot to allow both communication
of the bot’s intentions and in-game human control
of the bot’s behavior. It was tested in a small experi-
ment in which a player is allied with the bot, with or
without the communication and control elements,
against two other bots. The players rated the com-
municating bots as more fun to play with than the
noncommunicating bots, and more experienced
players preferred to be able to control the bot while
novice players preferred a noncontrollable bot. Much
more research is required to investigate collaboration
between humans and bots, as well as collaboration
between bots only.

Standardized Evaluation
Despite games being a domain that is inherently suit-
ed to evaluating the effectiveness of the players and
measuring performance, it is difficult to make fair
comparisons between the results of most literature in
the StarCraft AI field.

Almost every paper has a different method for eval-
uating its results, and many of these experiments are
of poor quality. Evaluation is further complicated by
the diversity of applications, as many of the systems
developed are not suited to playing entire games of
StarCraft, but are suited to a specific subproblem.
Such a research community, made up of isolated
studies that are not mutually comparable, was recog-
nized as problematic by Aha and Molineaux (2004).
Their Testbed for Integrating and Evaluating Learn-
ing Techniques (TIELT), which aimed to standardize
the learning environment for evaluation, attempted
to address the problem but unfortunately never
became very widely used.

Partial systems — those that are unable to play a
full game of StarCraft — are often evaluated using a
custom metric, which makes comparison between
such systems nearly impossible. A potential solution
for this would be to select a common set of parts that
could plug in to partial systems and allow them to
function as a complete system for testing. This may
be possible by compartmentalizing parts of an open-
source AI used in a StarCraft AI competition, such as
UAlbertaBot (Churchill and Buro 2012), which is
designed to be modular, or using an add-on library
such as the BWAPI Standard Add-on Library
(BWSAL).25 Alternatively, a set of common tests could
be made for partial systems to be run against. Such
tests could examine common subproblems of an AI
system, such as tactical decision making, planning,
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and plan recognition, as separate suites of tests. Even
without these tests in place, new systems should at
least be evaluated against representative related sys-
tems in order to show that they represent a nontriv-
ial improvement.

Results published about complete systems are sim-
ilarly difficult to compare against one another due to
their varied methods of evaluation. Some of the only
comparable results come from systems demonstrated
against the inbuilt StarCraft AI, despite the fact that
the inbuilt AI is a simple scripted strategy that aver-
age human players can easily defeat (Weber, Mateas,
and Jhala 2010). Complete systems are more effec-
tively tested in StarCraft AI competitions, but these
are run infrequently, making quick evaluation diffi-
cult. An alternative method of evaluation is to auto-
matically test the bots against other bots in a ladder
tournament, such as in the StarCraft Brood War Lad-
der for BWAPI Bots.26 In order to create a consistent
benchmark of bot strength, a suite of tests could be
formed from the top three bots from each of the
AIIDE StarCraft competitions on a selected set of
tournament maps. This would provide enough vari-
ety to give a general indication of bot strength, and
it would allow for results to be compared between
papers and over different years. An alternative to test-
ing bots against other bots is testing them in match-
es against humans, such as how Weber, Mateas, and
Jhala (2010) tested their bot in the ICCup.

Finally, it may be useful to have a standard evalu-
ation method for goals other than finding the AI best
at winning the game. For example, the game indus-
try would be more interested in determining the AI
that is most fun to play against, or the most human-
like. A possible evaluation for these alternate objec-
tives was discussed earlier.

Conclusion
This article has reviewed the literature on artificial
intelligence for real-time strategy games focusing on
StarCraft. It found significant research focus on tacti-
cal decision making, strategic decision making, plan
recognition, and strategy learning. Three main areas
were identified where future research could have a
large positive impact. First, creating RTS AI that is
more humanlike would be an interesting challenge
and may help to bridge the gap between academe
and industry. The other two research areas discussed
were noted to be lacking in research contributions,
despite being highly appropriate for real-time strate-
gy game research: multiscale AI, and cooperation.
Finally, the article finished with a call for increased
rigor and ideally standardization of evaluation meth-
ods, so that different techniques can be compared on
even ground. Overall the RTS AI field is small but
very active, with the StarCraft agents showing con-
tinual improvement each year, as well as gradually
becoming more based upon machine learning, learn-

ing from demonstration, and reasoning, instead of
using scripted or fixed behaviors.

Notes
1. Blizzard Entertainment: StarCraft: blizzard.com/games/
sc/.

2. Wargus: wargus.sourceforge.net.

3. Open RTS: skatgame.net/mburo/orts.

4. Brood War API: code.google.com/p/bwapi.

5. AIIDE StarCraft AI Competition: www.starcraftaicompe-
tition.com.

6. CIG StarCraft AI Competition: ls11-www.cs.uni-dort-
mund.de/rts-competition/. 

7. Mad Doc Software. Website no longer available. 

8. SparCraft: code.google.com/p/sparcraft/.

9.  Blizzard Entertainment: Warcraft III: blizzard.com/
games/war3/.

10.  TimeGate Studios: Kohan II Kings of War: www.
timegate.com/games/kohan-2-kings-of-war.

11. Spring RTS: springrts.com.

12. International Cyber Cup: www.iccup.com.

13. See A. J. Champandard, This Year [2010] in Game AI:
Analysis, Trends from 2010 and Predictions for 2011.
aigamedev.com/open/editorial/2010-retrospective.

14.  Blizzard Entertainment: StarCraft II: blizzard.com/
games/sc2/.

15.  Evolution Chamber: code.google.com/p/evolution-
chamber/.

16. See A. Turner, 2012, Soar-SC:  A Platform for AI Research
in StarCraft:  Brood War github.com/bluechill/Soar-
SC/tree/master/Soar-SC-Papers.

17.  Introversion Software: DEFCON: www.introversion
.co.uk/defcon.

18. RoboCup: www.robocup.org.

19. Uber Entertainment: Planetary Annihilation: www.
uberent.com/pa.

20. Personal communication with M. Robbins, 2013. Rob-
bins is a software engineer at Uber Entertainment, former-
ly game-play engineer at Gas Powered Games.

21. Also see L. Dicken’s 2011 blog, altdevblogaday.com
/2011/05/12/a-difficult-subject/.

22. Personal communication with B. Schwab, 2013. Schwab
is a senior AI/game-play engineer at Blizzard Entertain-
ment.

23. BotPrize: botprize.org.

24. See L. Dicken’s 2011 blog, A Turing Test for Bots. altde-
vblogaday.com/2011/09/09/a-turing-test-for-bots/.

25.  BWAPI Standard Add-on Library: code.google.
com/p/bwsal.

26.  StarCraft Brood War Ladder for BWAPI Bots: bots-
stats.krasi0.com.
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Power to the People: 
The Role of Humans in 

Interactive Machine Learning

Saleema Amershi, Maya Cakmak, W. Bradley Knox, Todd Kulesza1

Machine learning is a powerful tool for transforming
data into computational models that can drive
user-facing applications. However, potential users

of such applications, who are often domain experts for the
application, have limited involvement in the process of
developing them. The intricacies of applying machine-learn-
ing techniques to everyday problems have largely restricted
their use to skilled practitioners. In the traditional applied
machine-learning workflow, these practitioners collect data,
select features to represent the data, preprocess and trans-
form the data, choose a representation and learning algo-
rithm to construct the model, tune parameters of the algo-
rithm, and finally assess the quality of the resulting model.
This assessment often leads to further iterations on many of
the previous steps. Typically, any end-user involvement in
this process is mediated by the practitioners and is limited to
providing data, answering domain-related questions, or giv-
ing feedback about the learned model. This results in a
design process with lengthy and asynchronous iterations
and limits the end users’ ability to affect the resulting mod-
els.

Consider the following case study of machine-learning
practitioners working with biochemists to develop a protein
taxonomy by clustering low-level protein structures (Carua-
na et al. 2006). The project lead recounted their experience
in an invited talk at the Intelligent User Interfaces’s 2013
Workshop on Interactive Machine Learning (Amershi et al.
2013). First, the practitioners would create a clustering of the
protein structures. Then, they would meet with the bio-
chemists to discuss the results. The biochemists would cri-
tique the results (for example, “these two proteins should /
should not be in the same cluster” or “this cluster is too
small”), providing new constraints for the next iteration.
Following each meeting, the practitioners would carefully
adjust the clustering parameters to adhere to the given con-

n Systems that can learn interactively from
their end-users are quickly becoming wide-
spread. Until recently, this progress has been
fueled mostly by advances in machine learn-
ing; however, more and more researchers are
realizing the importance of studying users of
these systems. In this article we promote this
approach and demonstrate how it can result
in better user experiences and more effective
learning systems. We present a number of
case studies that demonstrate how interactiv-
ity results in a tight coupling between the sys-
tem and the user, exemplify ways in which
some existing systems fail to account for the
user, and explore new ways for learning sys-
tems to interact with their users. After giving
a glimpse of the progress that has been made
thus far, we discuss some of the challenges we
face in moving the field forward.
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straints and recompute clusters for the next meeting.
Frustrated by the inefficiency of this laborious
process, Caruana and colleagues went on to develop
learning algorithms that enable interactive explo-
ration of the clustering space and incorporation of
new clustering constraints (Cohn, Caruana, and
McCallum 2003; Caruana et al. 2006). These algo-
rithms were intended to give people the ability to
rapidly iterate and inspect many alternative cluster-
ings within a single sitting.

Their later approach is an example of interactive
machine learning, where learning cycles involve
more rapid, focused, and incremental model updates
than in the traditional machine-learning process.
These properties enable everyday users to interac-
tively explore the model space and drive the system
toward an intended behavior, reducing the need for
supervision by practitioners. Consequently, interac-
tive machine learning can facilitate the democratiza-
tion of applied machine learning, empowering end
users to create machine-learning-based systems for
their own needs and purposes. However, enabling
effective end-user interaction with interactive
machine learning introduces new challenges that
require a better understanding of end-user capabili-
ties, behaviors, and needs.

This article promotes the empirical study of the
users of interactive machine-learning systems as a
method for addressing these challenges. Through a
series of case studies, we illustrate the following
propositions:

Rapid, focused, and incremental learning cycles result
in a tight coupling between the user and the system,
where the two influence one another. As a result it is
difficult to decouple their influence on the resulting
model and study such systems in isolation. 

Explicitly studying user interaction can challenge
assumptions of traditional learning systems about
users and better inform the design of interactive learn-
ing systems.

The ways in which end users interact with learning
systems can be expanded to ways in which practition-
ers do (for example, tuning parameters or defining
new constraints); however, novel interaction tech-
niques should be carefully evaluated with potential
end users.

While the presented case studies paint a broad pic-
ture of recent research in user interaction with inter-
active machine learning, this article does not exhaus-
tively survey the literature in this space. Rather, these
case studies are selected to highlight the role and
importance of the user within the interactive
machine-learning process, serving as an introduction
to the topic and a vehicle for considering this body of
research altogether. We conclude this article with a
discussion of the current state of the field, identifying
opportunities and open challenges for future interac-
tive machine-learning research.

Interactive Machine Learning
The applied machine-learning workflow often
involves long and complex iterations. The process
starts with data provided by domain experts or specifi-
cally collected for the target application. Machine-
learning practitioners then work with domain experts
to identify features to represent the data. Next, the
practitioners experiment with different machine-
learning algorithms, iteratively tuning parameters,
tweaking features, and sometimes collecting more
data to improve target performance metrics. Results
are then further examined both by practitioners and
domain experts to inform the subsequent iteration. At
the end of this long cycle, the model is updated in sev-
eral ways and can be drastically different from the pre-
vious iteration. Furthermore, this iterative exploration
of the model space is primarily driven by the machine-
learning practitioners, who rely on their understand-
ing of machine-learning techniques to make informed
model updates in each iteration.

In contrast, model updates in interactive machine
learning are more rapid (the model gets updated
immediately in response to user input), focused (only
a particular aspect of the model is updated), and incre-
mental (the magnitude of the update is small; the
model does not change drastically with a single
update). This allows users to interactively examine the
impact of their actions and adapt subsequent inputs to
obtain desired behaviors. As a result of these rapid
interaction cycles, even users with little or no
machine-learning expertise can steer machine-learn-
ing behaviors through low-cost trial and error or
focused experimentation with inputs and outputs. Fig-
ure 1 illustrates traditional applied machine learning
and interactive machine learning, highlighting their
contrasting characteristics.

Perhaps the most familiar examples of interactive
machine learning in real-world applications are rec-
ommender systems such as Amazon product recom-
mendations, Netflix movie recommendations, and
Pandora music recommendations. Users of recom-
mender systems are often asked targeted questions
about their preferences for individual items2 (which
they provide by liking or disliking them, for example).
These preferences are then promptly incorporated in
the underlying learning system for subsequent recom-
mendations. If a recommender system begins recom-
mending undesired items after incorporating new
preferences, the user may attempt to redirect the sys-
tem by correcting it or providing different preference
information in the future. 

We next present two case studies that exemplify the
interactive machine-learning process and demonstrate
its potential as an end-user tool.

Interactive Machine Learning 
for Image Segmentation
Fails and Olsen (2003) were the first to introduce the
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term interactive machine learning in the human-com-
puter interaction community, characterizing it with
rapid train-feedback-correct cycles, where users itera-
tively provide corrective feedback to a learner after
viewing its output. They demonstrated this process
with their Crayons system, which allowed users with
no machine-learning background to train pixel clas-
sifiers by iteratively marking pixels as foreground or
background through brushstrokes on an image. After
each user interaction, the system responded with an
updated image segmentation for further review and
corrective input. 

Evaluations of Crayons through user studies
revealed that the immediate output provided by the
system allowed users to quickly view and correct mis-
classifications by adding new training data in the

most problematic areas. As illustrated in figure 2,
after an initial classification, the user provides
Crayons with more data at the edges of the hand
where the classifier failed. When asked what they
were thinking while interacting with the system,
most users stated that they were focused on seeing
parts of the image that were classified incorrectly.

Fails and Olsen’s work on Crayons demonstrated
that users modify their behavior based on a learner’s
outputs, which is an underlying premise for much of
the following research on interactive machine learning.

Interactive Machine Learning 
for Gesture-Based Music
Another example of an interactive machine-learning
system comes from the realm of music composition

Figure 1. Traditional Applied and Interactive Machine Learning.

In machine learning, people iteratively supply information to a learning system and then observe and interpret the outputs of the system
to inform subsequent iterations. In interactive machine learning, these iterations are more focused, frequent, and incremental than tradi-
tional machine learning. The tighter interaction between users and learning systems in interactive machine learning necessitates an
increased focus on studying the user’s involvement in the process.
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and performance. This domain is naturally interac-
tive: musicians are accustomed to receiving immedi-
ate feedback when interacting with a musical instru-
ment. Fiebrink, Cook, and Trueman (2011)
developed the Wekinator, a machine-learning system
for enabling people to interactively create novel ges-
ture-based instruments, such as moving an arm in
front of a web camera to produce different sounds
based on the arm’s position, speed, or rotation. In
this system, a neural network receives paired gestures
and sounds from the user as input and learns how to
interpolate from unobserved gesture positions to a
range of sounds. Users evaluate their instruments
directly by gesturing and assessing the produced
sounds.

While observing students using Wekinator in an
interdisciplinary music and computer science course,
the authors found that as students trained their
respective instruments, the interactive nature of the
system also helped train the students. For example,
the students learned how to recognize noise in their
training samples and provide clearer examples to the
learner. In some cases, students even adjusted their
goals to match the observed capabilities of the learn-
er. In a follow-up investigation with a professional
cellist (Fiebrink, Cook, and Trueman 2011), the cellist
identified flaws in her playing technique while try-

ing to train a gesture recognizer. The process revealed
that the cellist’s bowing articulation was not as pre-
cise as she had believed. By observing the outputs of
the system in real time, Wekinator users were able to
modify their behavior in ways that allowed them to
create instruments to their satisfaction.

Summary
These examples illustrate the rapid, focused, and
incremental interaction cycles fundamental to inter-
active machine learning; it is these cycles that facili-
tate end-user involvement in the machine-learning
process. These cycles also result in a tight coupling
between the user and the system, making it impossi-
ble to study the system in isolation from the user.
This necessitates an increased focus on studying how
users can effectively influence the machine-learning
system and how the learning system can appropri-
ately influence the users. The following section
examines how explicitly studying end users can chal-
lenge assumptions of traditional machine learning
and better inform the development of interactive
machine-learning systems. Many of the case studies
to follow additionally consider less traditional types
of input and output, moving beyond labeled exam-
ples and observations of learner predictions. 
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Figure 2. Interactive Training of the Crayons System.

The system takes pixels labeled as background/foreground as input (provided through brush strokes), and gives a fully segmented image as
output (obtained through a classifier that labels each pixel as foreground/background). The user’s input is focused on areas where the clas-
sifier is failing in previous iterations (Fails and Olsen 2003).

Input Data

Segmentation

Iteration 1 Iteration 2 Iteration 3



Studying User Interaction with 
Interactive Machine Learning

The increased interaction between users and learning
systems in interactive machine learning necessitates
an increased understanding of how end-user involve-
ment affects the learning process. In this section, we
present case studies illustrating how such an under-
standing can ultimately lead to better-informed sys-
tem designs. First, we present case studies demon-
strating how people may violate assumptions made
by traditional machine learners, resulting in unex-
pected outcomes and user frustration. Next, we pres-
ent case studies indicating that people may want to
interact with machine-learning systems in richer
ways than anticipated, suggesting new input and
output capabilities. Finally, we present case studies
that experiment with increasing transparency about
how machine-learning systems work, finding that
such transparency can improve the user experience
in some scenarios, as well as the accuracy of resulting
models.

Users Are People, Not Oracles
Active learning is a machine-learning paradigm in
which the learner chooses the examples from which
it will learn (Settles 2010). These examples are select-
ed from a pool of unlabeled samples based on some
selection criterion (for example, samples for which
the learner has maximum uncertainty). For each
selected sample the learner queries an oracle to
request a label. This method has had success in accel-
erating learning (that is, requiring fewer labels to

reach a target accuracy) in applications like text clas-
sification and object recognition, where oracles are
often paid to provide labels over a long period of
time. However, Cakmak and colleagues (2010) dis-
covered that when applied to interactive settings,
such as a person teaching a task to a robot by exam-
ple, active learning can cause several problems.

Cakmak’s study (figure 3) found that the constant
stream of questions from the robot during the inter-
action was perceived as imbalanced and annoying.
The stream of questions also led to a decline in the
user’s mental model of how the robot learned, caus-
ing some participants to “turn their brain off” or
“lose track of what they were teaching” (according
to their self report) (Cakmak, Choa, and Thomaz
2010). Guillory and Bilmes (2011) reported similar
findings for an active movie recommendation sys-
tem they developed for Netflix. These studies reveal
that users are not necessarily willing to be simple
oracles (that is, repeatedly telling the computer
whether it is right or wrong), breaking a fundamen-
tal assumption of active learning. Instead, these sys-
tems need to account for human factors such as
interruptibility or frustration when employing meth-
ods like active learning.

People Tend to Give More Positive 
Than Negative Feedback to Learners
In reinforcement learning, an agent senses and acts
in a task environment and receives numeric reward
values after each action. With this experience, the
learning agent attempts to find behavioral policies
that improve its expected accumulation of reward. A
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Figure 3. Users Teaching New Concepts to a Robot by Providing Positive and Negative Examples. 

Left: Passive learning: examples are chosen and presented by the user. Right: Active learning: particular examples are requested by the learn-
er. Although active learning results in faster convergence, users get frustrated from having to answer the learner’s long stream of questions
and not having control over the interaction.



number of research projects have investigated the
scenario in which this reward comes as feedback
from a human user rather than a function predefined
by an expert (Isbell et al. 2006, Thomaz and Breazeal
2008, Knox and Stone 2012). In evaluating the feasi-
bility of nonexpert users teaching through reward
signals, these researchers aimed to both leverage
human knowledge to improve learning speed and
permit users to customize an agent’s behavior to fit
their own needs.

Thomaz and Breazeal (2008) observed that people
have a strong tendency to give more positive rewards
than negative rewards. Knox and Stone (2012) later
confirmed this positive bias in their own experi-
ments. They further demonstrated that such bias
leads many agents to avoid the goal that users are
teaching it to reach (for example, the water in figure
4). This undesirable consequence occurs with a com-
mon class of reinforcement learning algorithms:
agents that value reward accrued over the long term
and are being taught to complete so-called episodic
tasks. This insight provided justification for the pre-
viously popular solution of making agents that hedo-
nistically pursue only short-term human reward, and
it led Knox and Stone (2013) to create an algorithm
that successfully learns by valuing human reward
that can be gained in the long term. Agents trained
through their novel approach were more robust to
environmental changes and behaved more appropri-
ately in unfamiliar states than did more hedonistic
(that is, myopic) variants. These agents and the algo-
rithmic design guidelines Knox and Stone created
were the result of multiple iterations of user studies,

which identified positive bias and then verified its
hypothesized effects.

People Want to Demonstrate 
How Learners Should Behave
In an experiment by Thomaz and Breazeal (2008)
users trained a simulated agent to bake a cake
through a reinforcement learning framework. In their
interface, users gave feedback to the learner by click-
ing and dragging a mouse — longer drags gave larg-
er-magnitude reward values, and the drag direction
determined the valence (+/–) of the reward value (fig-
ure 4). Further, users could click on specific objects to
signal that the feedback was specific to that object,
but they were told that they could not communicate
which action the agent should take.

Thomaz and Breazeal found evidence that people
nonetheless gave positive feedback to objects that
they wanted the agent to manipulate, such as an
empty bowl that the agent is in position to pick up.
These users violated the instructions by applying
what could be considered an irrelevant degree of free-
dom — giving feedback to objects that had not been
recently manipulated — to provide guidance to the
agent about future actions, rather than actual feed-
back about previous actions. After Thomaz and
Breazeal adapted the agent’s interface and algorithm
to incorporate such guidance, the agent’s learning
performance significantly improved.

Other researchers have reached similar conclu-
sions. In a Wizard-of-Oz study (that is, the agent’s
outputs were secretly provided by a human) by
Kaochar and colleagues (2011), users taught a simu-
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Time: 16

Figure 4. Two Task Domains for Reinforcement Learning Agents Taught by Human Users.

Left: A cooking robot that must pick up and use the ingredients in an acceptable order (Thomaz and Breazeal 2006). The green vertical bar
displays positive feedback given by a click-and-drag interface. Right: A simulated robot frog that users teach how to navigate to the water
(Knox and Stone 2012).



lated unmanned aerial vehicle (UAV) to conduct var-
ious missions. At any time, these users chose whether
to teach by demonstration, by feedback, or by pro-
viding an example of a concept. They could also test
the agent to see what it had learned. The authors
found that users never taught exclusively by feed-
back, instead generally using it after teaching by the
other available means. Together, these two studies
provide insight into the design of natural interfaces
for teaching agents. 

People Naturally Want to 
Provide More Than Just Data Labels
Labeling data remains the most popular method for
end-user input to interactive machine-learning sys-
tems because of its simplicity and ease of use. How-
ever, as demonstrated in previous case studies, label-
based input can have drawbacks (for example,
negative attitudes toward being treated as an oracle).
In addition, emerging research suggests that in some
scenarios users may desire richer control over
machine-learning systems than simply labeling data.

For example, Stumpf and colleagues (2007) con-
ducted a study to understand the types of input end
users might provide to machine-learning systems if
unrestricted by the interface. The authors generated
three types of explanations for predictions from a
text classification system operating over email mes-
sages. These explanations were presented to people
in the form of paper-based mockups to avoid the
impression of a finished system and encourage peo-
ple to provide more feedback. People were then asked
to give free-form feedback on the paper prototypes
with the goal of trying to correct the classifier’s mis-
takes. This experiment generated approximately 500
feedback instances from participants, which were
then annotated and categorized. The authors found
that people naturally provided a wide variety of input
types to improve the classifier’s performance, includ-
ing suggesting alternative features to use, adjusting
the importance or weight given to different features,
and modifying the information extracted from the
text. These results present an opportunity to develop
new machine-learning algorithms that might better
support the natural feedback people want to provide
to learners, rather than force users to interact in lim-
ited, learner-centered ways.

People Value Transparency in 
Learning Systems
In addition to wanting richer controls, people some-
times desire more transparency about how their
machine-learning systems work. Kulesza and col-
leagues (2012) provided users of a content-based
music recommender with a 15-minute tutorial dis-
cussing how the recommender worked and how var-
ious feedback controls (for example, rating songs,
steering toward specific feature values, and so on)
would affect the learner. Surprisingly, participants

responded positively to learning these details about
the system. In addition, the researchers found that
the more participants learned about the recom-
mender while interacting with it, the more satisfied
they were with the recommender’s output. This case
study provides evidence that users are not always sat-
isfied by “black box” learning systems — sometimes
they want to provide nuanced feedback to steer the
system, and they are willing and able to learn details
about the system to do so. 

Examining transparency at a more social level,
Rashid and colleagues (2006) examined the effect of
showing users the value of their potential movie rat-
ings to a broader community in the MovieLens rec-
ommendation system. Users who were given infor-
mation about the value of their contribution to the
entire MovieLens community provided more ratings
than those who were not given such information,
and those given information about value to a group
of users with similar tastes gave more ratings than
those given information regarding the full Movie-
Lens community.

Transparency Can Help People 
Provide Better Labels
Sometimes users make mistakes while labeling, thus
providing false information to the learner. Although
most learning systems are robust to the occasional
human error, Rosenthal and Dey set out to solve this
problem at the source. They sought to reduce user mis-
takes by providing targeted information when a label
is requested in an active learning setting. The infor-
mation provided to the user included a combination
of contextual features of the sample to be labeled,
explanations of those features, the learner’s own pre-
diction of the label for the sample, and its uncertainty
in this prediction (Rosenthal  and  Dey 2010).

They conducted two studies to determine the
subset of such information that is most effective in
improving the labeling accuracy of users. The first
involved people labeling strangers’ emails into cat-
egories, as well as labeling the interruptability of
strangers’ activities; the second involved people
labeling sensory recordings of their own physical
activity. Both studies found that the highest label-
ing accuracy occurred when the system provided
sufficient contextual features and current predic-
tions without uncertainty information. This line of
research demonstrates that the way in which infor-
mation is presented (for example, with or without
context) can greatly affect the quality of the
response elicited from the user. This case study also
shows that not all types of transparency improve
the performance of interactive machine-learning
systems, and user studies can help determine what
information is most helpful to the intended audi-
ence.
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Summary
Understanding how people actually interact — and
want to interact — with machine-learning systems is
critical to designing systems that people can use effec-
tively. Exploring interaction techniques through user
studies can reveal gaps in a designer’s assumptions
about their end users and may suggest new algorith-
mic solutions. In some of the cases we reviewed, peo-
ple naturally violated assumptions of the machine-
learning algorithm or were unwilling to comply with
them. Other cases demonstrated that user studies can
lead to helpful insights about the types of input and
output that interfaces for interactive machine learning
should support. In general, this type of research can
produce design suggestions and considerations, not
only for people building user interfaces and developing
the overall user experience, but for the machine-learn-
ing community as well.

Novel Interfaces for Interactive
Machine Learning

As many of the case studies in the previous section
showed, end users often desire richer involvement in
the interactive machine-learning process than label-
ing instances. In addition, research on cost-benefit
trade-offs in human-computer interaction has shown
that people will invest time and attention into com-
plex tasks if they perceive their efforts to have greater
benefits than costs (Blackwell 2002). For example,
research on end-user programming has shown that
end users program often (for example, through
spreadsheets, macros, or mash-ups), but do so prima-
rily to accomplish some larger goal (Blackwell 2002).
The act of programming is an investment, and the
expected benefit is using the program to accomplish
their goal sooner or with less effort than doing it
manually. Similarly, this theory suggests that people
will invest time to improve their machine learners
only if they view the task as more beneficial than
costly or risky — that is, when they perceive the ben-
efits of producing an effective learner as outweighing
the costs of increased interaction. Therefore, we
believe there is an opportunity to explore new, rich-
er interfaces that can leverage human knowledge and
capabilities more efficiently and effectively.

In this section, we present case studies that explore
novel interfaces for interactive machine-learning sys-
tems and demonstrate the feasibility of richer inter-
actions. Interface novelty in these cases can come
from new methods for receiving input or providing
output. New input techniques can give users more
control over the learning system, allowing them to
move beyond labeling examples. Such input tech-
niques include methods for feature creation,
reweighting of features, adjusting cost matrices, or
modifying model parameters. Novel output tech-
niques can make the system’s state more transparent

or understandable. For example, a system could
group unlabeled data to help users label the most
informative items, or it could communicate uncer-
tainty about the system’s predictions. 

These case studies also reinforce our proposition
that interactive machine-learning systems should be
evaluated with potential end users. Such evaluations
are needed both to validate that these systems per-
form well with real users and to gain insights for fur-
ther improvement. Many of the novel interfaces
detailed in this section were found to be beneficial,
but some of the case studies also demonstrate that
certain types of input or output may lead to obstacles
for the user or reduce the accuracy of the resulting
learner. Therefore, novel interfaces should be
designed with care and appropriately evaluated
before deployment.

Supporting Assessment of Model Quality
In each iteration of the interactive machine-learning
process, the user may assess the quality of the current
model and then decide how to proceed with further
input. A common technique for conveying model
quality in supervised learning is to present a person
with all of the unlabeled data sorted by their predict-
ed scores for some class (for example, classification
probabilities or relevance rankings). After evaluating
this presentation, a person then decides how to pro-
ceed in training by selecting additional examples to
label for further input. Although straightforward, this
technique inefficiently illustrates learner quality and
provides the user with no guidance in selecting addi-
tional training examples. 

Fogarty and colleagues (2008) investigated novel
techniques for presenting model quality in CueFlik,
an interactive machine-learning system for image
classification (figure 5). Through a user study, the
authors demonstrated that a technique of presenting
users with only the best- and worst-matching exam-
ples enabled users to evaluate model quality more
quickly and, in turn, train significantly better models
than the standard technique of presenting the user
with all of the data. In a follow-up investigation with
CueFlik, Amershi and colleagues (2009) went on to
show that presentation techniques designed to sum-
marize model quality for users while providing them
with high-value examples to choose from as further
input to the model led users to train better models
than the best- and worst-matching technique from
previous work. These case studies demonstrate that
presentation matters and designing interfaces that
balance the needs of both end users and machine
learners is more effective than optimizing user inter-
faces for end users in isolation.

Supporting Experimentation 
with Model Inputs
Interactive machine learning enables rapid and incre-
mental iterations between the end user and the
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machine learner. As a result, users may want to exper-
iment with alternative inputs and examine resulting
model outputs before committing to any model
input. To support end-user experimentation, Amer-
shi and colleagues (2010) augmented the CueFlik sys-
tem (figure 6) discussed previously with a history
visualization to facilitate model comparison and sup-
port for model revision (through undo or redo,
removing labels, and reverting to previous models
using the history visualization). In a user study,
Amershi et al. showed that end users used revision
when it was available and this led them to achieve
better final models in the same amount of time (even
while performing more actions) compared to when
these supports were unavailable. Furthermore, being
able to examine and revise actions is consistent with
how people expect to interact with their applica-
tions. One participant in this study commented that
without revision “it felt a little like typing on a key-
board without a backspace key.” This case study illus-
trates that end users may be willing and may expect
options to experiment and revise their inputs to
machine learners during the interactive machine-
learning process.

Appropriately Timing Queries to the User
As discussed earlier, applying active learning to inter-
active settings can be undesirable to the user when
questions come in a constant stream from the learn-
ing system. To address this problem, Cakmak  and
Thomaz (2010) proposed intermittently active learn-
ing, in which only a subset of the examples provided

by the user are obtained through queries. This brings
a new challenge for the learner: deciding when to
query as opposed to letting the user choose an exam-
ple. Cakmak  and  Thomaz explored two approach-
es. In the first, the learner made queries only when
certain conditions were met. It took into account the
quality of examples chosen by the user and the prob-
ability that the user could randomly provide useful
examples. In the second approach, the user decided
when the learner was allowed to ask questions (that
is, a query was made only when the user said “do you
have any questions?”).

A study comparing intermittently active learning
with fully active and passive learning demonstrated
its advantage over these two extremes (Cakmak,
Chao, and Tomaz 2010). The study showed that both
intermittent approaches resulted in learning as fast
as the fully active approach, while being subjective-
ly preferred over fully active or fully passive
approaches. The interactions with the intermittent-
ly active learners were found to be more balanced,
enjoyable, and less frustrating. When asked to
choose between the two alternative approaches,
users preferred the teacher-triggered queries, men-
tioning that they liked having full control over the
learner’s queries. As exemplified in this case study,
building interactive learning systems that fit user
preferences can sometimes require the modification
of existing methods in fundamental ways.

Enabling Users to Query the Learner
In addition to the learner querying the user as in the
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Standard presentation using 
a ranked list of examples

Best and worst matching
examples presentation

Figure 5. Comparing the Quality of a Machine-Learned Visual Concept. 

Fogarty et al.’s work (2008) with CueFlik compared two methods of illustrating the quality of a machine-learned visual concept.The stan-
dard method (left) presented users with examples ranked by their likelihood of membership to the positive class. The best and worst match-
es method (right) instead showed examples predicted as positive or negative with high certainty by CueFlik. A user study showed that the
best- and worst-matches technique led users to train significantly better learners than the standard presentation.



active learning paradigm, sometimes the user may
want to query the learner. Kulesza and colleagues
(2011) developed an approach to let users ask a text
classifier why it was behaving in a particular way (for
example, “Why was this classified as X instead of
Y?”). The learner’s responses were interactive, thus
providing a way for users not only to understand
why the system had made a particular prediction, but
also to adjust the learner’s reasoning if its prediction
was wrong. For example, the learner could display a
bar graph showing that it associated the word “job”
with the topic of “news” more than the topic of
“résumés”; if the user disagreed with this reasoning,
he or she could adjust the graph to tell the learner
that “jobs” should be associated with “résumés”
more than “news”.

Most participants exposed to this why-oriented
interaction approach significantly increased the
accuracy of their naïve Bayes text classifiers; howev-
er, every participant encountered a number of barri-
ers while doing so. In particular, participants had
trouble selecting features to modify from the thou-
sands in the bag-of-words feature set. Also, once par-
ticipants did select features to adjust, they had trou-
ble understanding how changes to a single feature
altered the learner’s predictions for seemingly unre-
lated items. This study suggests that for learners with
large feature sets or complex interactions between

features, users will need additional support to make
sense of which features are most responsible for an
item’s classification.

Enabling Users to Critique Learner Output
Some machine-learning systems help users navigate
an otherwise unnavigable search space. For example,
recommender systems help people find specific
items of interest, filtering out irrelevant items. Vig,
Sen, and Riedl (2011) studied a common problem in
this domain: recommending results that are close,
but not quite close enough, to what the user was
looking for. Researchers developed a prototype to
support tag-based “critiques” of movie recommen-
dations. Users could respond to each recommenda-
tion with refinements such as “Like this, but less vio-
lent” or “Like this, but more cerebral,” where violent
and cerebral are tags that users had applied to vari-
ous movies. A k-nearest-neighbor approach was then
used to find similar items that included the user-
specified tags.

This relatively simple addition to the MovieLens
website garnered an overwhelmingly positive reac-
tion, with 89 percent of participants in a user study
saying that they liked it, and 79 percent requesting
that it remain a permanent feature on the site. This
example helps illustrate both the latent desire
among users for better control over machine-learn-
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Figure 6. CueFlik.

CueFlik augmented with a history visualization to facilitate model comparison and support for model revision. Amershi et al. (2010) showed
that these supports for experimentation during interactive machine learning enabled end users to train better quality models than when
these supports were unavailable.
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ing systems and that, by supporting such control in
an interactive fashion, user attitudes toward the
learner can be greatly enhanced.

Allowing Users to Specify 
Preferences on Errors
People sometimes want to refine the decision bound-
aries of their learners. In particular, for some classi-
fiers it might be critical to detect certain classes cor-
rectly, while tolerating errors in other classes (for
example, misclassifying spam as regular email is typ-
ically less costly than misclassifying regular email as
spam). However, refining classifier decision bound-
aries is a complex process even for experts, involving
iterative parameter tweaking, retraining, and evalua-
tion. This is particularly difficult because among
parameters there are often dependencies that lead to
complex mappings between parameter values and
the behavior of the system.

To address these difficulties, Kapoor and colleagues
(2010) created ManiMatrix (figure 7), a tool for people
to specify their preferences on decision boundaries
through interactively manipulating a classifier’s con-
fusion matrix (that is, a breakdown of the correct and
incorrect predictions it made for each class). Given
these preferences, ManiMatrix employs Bayesian deci-
sion theory to compute decision boundaries that min-
imize the expected cost of different types of errors, and
then visualizes the results for further user refinement.
A user study with machine-learning novices demon-
strated that participants were able to quickly and effec-
tively modify decision boundaries as desired with the
ManiMatrix system. This case study demonstrates that
nonexperts can directly manipulate a model’s learn-
ing objective, a distinctly different form of input than
choosing examples and labeling them.

Combining Models 
An ensemble classifier is a classifier that builds its pre-
diction from the predictions of multiple subclassi-
fiers, each of which are functions over the same space
as the ensemble classifier. Such ensembles often out-
perform all of their subclassifiers and are a staple of
applied machine learning (for example, AdaBoost by
Freund  and  Schapire [1995]). A common workflow
for creating ensemble classifiers is to experiment with
different features, parameters, and algorithms
through trial and error or hill-climbing through the
model space. Even for machine-learning experts,
however, this approach can be inefficient and lead to
suboptimal performance. 

To facilitate the creation of ensemble classifiers,
Talbot and colleagues (2009) developed Ensem-
bleMatrix, a novel tool for helping people interac-
tively build, evaluate, and explore different ensem-
bles (figure 8). EnsembleMatrix visualizes the current
ensemble of individual learners through a confusion
matrix. The user can then experiment with and eval-
uate different linear combinations of individual
learners by interactively adjusting the weights of all
models through a single two-dimensional interpola-
tion widget (top right in figure 8). EnsembleMatrix’s
novel interface also allows people to make use of
their visual processing capabilities to partition the
confusion matrix according to its illustrated per-
formance, effectively splitting the ensemble into
subensembles that can be further refined as neces-
sary. A user study showed that EnsembleMatrix
enabled people to create ensemble classifiers on par
with the best published ensembles on the same data
set. Furthermore, they managed to do so in a single,
one-hour session. The study involved participants
ranging from machine-learning novices to experts.

Figure 7. ManiMatrix System.

The ManiMatrix system displays the confusion matrix of the classifier and allows the user to directly increase or decrease the different types
of errors using arrows on the matrix cells. ManiMatrix provides feedback to the user by highlighting cells that change value as a result of
the user’s click (red indicates a decrease and green indicates an increase).
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This case study illustrates that effectively combining
human intuition and input with machine processing
can enable people to create better classifiers in less
time than standard approaches that ignore these
powerful human capabilities.

Summary
Whether a new interface will improve the user’s
experience or the system’s performance can only be
assessed through evaluation with potential end
users. In the case studies above, permitting richer
user interactions was often beneficial, but not always
so. Different users have different needs and expecta-
tions of the systems they employ. In addition, rich
interaction techniques may be appropriate for some
scenarios and not others. Thus, conducting user
studies of novel interactive machine-learning sys-
tems is critical not only for discovering promising
modes of interaction, but also to uncover obstacles
that users may encounter in different scenarios and

unspoken assumptions they might hold about
machine learners. The accumulation of such research
can facilitate the development of design guidelines
for building future interactive machine-learning sys-
tems, much like those that exist for traditional soft-
ware systems (for example, Shneiderman et al.
[2009]). 

Discussion
Interactive machine learning is a potentially power-
ful technique for enabling end-user interaction with
machine learning. As this article illustrates, studying
how people interact with interactive machine-learn-
ing systems and exploring new techniques for
enabling those interactions can result in better user
experiences and more effective machine learners.
However, research in this area has only just begun,
and many opportunities remain to improve the
interactive machine-learning process. This section
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Figure 8. EnsembleMatrix.

EnsembleMatrix visualizes the current ensemble (left) of individual learners (bottom right) through a confusion matrix. Users can adjust
the weights of individual models through a linear combination widget (top right) to experiment with different ensembles. Users can also
partition the confusion matrix to split and refine subensembles.
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describes open challenges and opportunities for
advancing the state of the art in human interaction
with interactive machine-learning systems.

Developing a Common Language 
Across Diverse Fields
As shown by the variety of case studies presented in
this article, many fields of computer science already
employ interactive machine learning to solve differ-
ent problems, such as search in information retrieval,
filtering in recommender systems, and task learning
in human-robot interaction. However, different fields
often refer to interactive machine learning or parts of
the interactive machine-learning process in domain-
specific terms (for example, relevance feedback, pro-
gramming by demonstration, debugging machine-
learned programs, socially guided machine learning).
This diversity in terminology impedes awareness of
progress in this common space and can potentially
lead to duplicate work. Seeking to develop a common
language and facilitate the development of new
interactive machine-learning systems, some
researchers have begun to examine this body of work
and abstract away domain-specific details from exist-
ing solutions to characterize common variables and
dimensions of the interactive machine-learning
process itself (for example, Amershi [2012]; Porter,
Theiler, and Hush [2013]). 

For example, Amershi (2012) examined interactive
machine-learning systems across several fields
(including information retrieval, context-aware com-
puting, and adaptive and intelligent systems) and
identified specific design factors influencing human
interaction with machine-learning systems (for
example, the expected duration of model use, the
focus of a person’s attention during interaction, the
source and type of data over which the machine will
learn) and design dimensions that can be varied to
address these factors (for example, the type and visi-
bility of model feedback, the granularity and direc-
tion of user control, and the timing and memory of
model input). In another example, Porter, Theiler,
and Hush (2013) break down the interactive
machine-learning process into three dimensions: task
decomposition (defining the level of coordination
and division of labor between the end user and the
machine learner), training vocabulary (defining the
type of input end users can provide the machine
learner), and the training dialogue (defining the lev-
el and frequency of interaction between the end user
and the learner). Design spaces such as these can help
to form a common language for researchers and
developers to communicate new interactive
machine-learning solutions and share ideas. Howev-
er, there are many ways to dissect and describe the
various interaction points between people and
machine learners within the interactive machine-
learning process. Therefore, an important opportuni-
ty remains for converging on and adopting a com-

mon language across these fields to help accelerate
research and development in this space.

Distilling Principles and Guidelines for
How to Design Human Interaction with
Machine Learning
In addition to developing a common language, an
opportunity remains for generalizing from existing
solutions and distilling principles and guidelines for
how we should design future human interaction
with interactive machine learning, much like we
have for designing traditional interfaces (for exam-
ple, Schneiderman et al. [2009]; Moggridge  and
Smith [2007]; Dix et al. [2004]; Winograd [1996];
Norman [1988]). For example, Schneiderman’s gold-
en rules of interface design advocate for designating
the users as the controllers of the system and offer-
ing them informative feedback after each interac-
tion. 

Some principles for designing traditional inter-
faces can directly translate to the design of interac-
tive machine learning interfaces — interactive
machine-learning systems inherently provide users
with feedback about their actions and, as this article
discusses, giving users more control over machine-
learning systems can often improve a user’s experi-
ence. However, interactive machine-learning sys-
tems also often inherently violate many existing
interface design principles. For example, research has
shown that traditional interfaces that support under-
standability (that is, systems that are predictable or
clear about how they work) and actionability (that
is, systems that make it clear how a person can
accomplish his or her goals and give the person the
freedom to do so) are generally more usable than
interfaces that do not support these principles. Many
machine-learning systems violate both principles:
they are inherently difficult for users to understand
fully and they largely limit the control given to the
end user. Thus, there is an opportunity to explore
how current design principles apply to the human-
computer interaction in interactive machine learn-
ing.

Some researchers have started to suggest new prin-
ciples for designing end-user interaction with gener-
al artificial intelligence systems, many of which
could translate to end-user interaction with interac-
tive machine learning (for example, Norman [1994];
Höök [2000]; Horvitz [1999]; Jameson [2009]). For
example, Norman (1994) and Höök (2000) both
identified safety and trust as key factors to consider
when designing intelligent systems, referring to the
assurance against and prevention of unwanted adap-
tations or actions. Others have stated that artificial-
ly intelligent and machine-learning-based systems
should manage expectations to avoid misleading or
frustrating the user during interaction (for example,
Norman [1994]; Höök [2000]; Jameson [2009]). In
Horvitz’s formative paper on mixed-initiative inter-
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can deal with this problem through
more iterations, algorithms that are
both fast and accurate would improve
the quality of learned models and
reduce the number of iterations need-
ed to obtain useful models. Second, as
some of the case studies described in
this article showed, users may desire to
interact with machine-learning sys-
tems in ways that are not supported by
existing machine-learning methods.
Addressing this challenge requires the
development of new frameworks and
algorithms that can handle different
inputs and outputs that are desirable
and natural for end users. 

Increasing Collaboration 
Across the Fields of Human
Computer Interaction and
Machine Learning
The inherent coupling of the human
and machine in interactive machine
learning underscores the need for col-
laboration across the fields of human-
computer interaction and machine
learning. This collaboration will bene-
fit human-computer interaction
researchers in solving the algorithmic
problems discussed above and provide
more powerful tools to end users. In
turn, machine-learning researchers
would benefit by having new methods
evaluated with potential users to
address practical issues and by devel-
oping new frameworks that support
realistic assumptions about users.

Finally, we believe that the diversity
of perspectives will benefit both com-
munities. For example, when dealing
with noisy problems, machine-learn-
ing researchers have often attempted
to develop algorithms that work
despite the noise, whereas human-
computer interaction researchers often
try to develop interaction techniques
to reduce the noise that end users
induce. Collaboration between these
two communities could leverage the
benefits of both solutions.

Conclusion
The case studies presented in this arti-
cle support three key points. First,
interactive machine learning differs
from traditional machine learning.
The interaction cycles in interactive
machine learning are typically more

faces (1999), he proposed several prin-
ciples for balancing artificial intelli-
gence with traditional direct-manipu-
lation constructs. For example, Horvitz
emphasized consideration of the tim-
ing of interactive intelligent services,
limiting the scope of adaptation or
favoring direct control under severe
uncertainty, and maintaining a work-
ing memory of recent interactions.
While these suggestions can help guide
the design of future systems, more
work remains to develop a compre-
hensive set of guidelines and principles
that work in various settings. Often
such design principles are distilled
from years of experience developing
such interactions. Alternatively, we
may accelerate the development of
such guidelines by extracting dimen-
sions that can be manipulated to
design interactive machine-learning
systems and systematically evaluating
general solutions in varying settings.

Developing Techniques and
Standards for Appropriately
Evaluating Interactive 
Machine-Learning Systems
Although systematic evaluation can
facilitate generalization and transfer of
ideas across fields, the interleaving of
human interaction and machine-
learning algorithms makes reductive
study of design elements difficult. For
example, it is often difficult to tease
apart whether failures of proposed
solutions are due to limitations of the
particular interface or interaction
strategies used, the particular algo-
rithm chosen, or the combination of
the interaction strategy with the par-
ticular algorithm used. Likewise, inap-
propriately attributing success or fail-
ure to individual attributes of
interactive machine-learning solutions
can be misleading. Therefore, new
evaluation techniques may be neces-
sary to appropriately gauge the effec-
tiveness of new interactive machine-
learning systems. In addition, as our
case studies illustrated, some interac-
tion techniques may be appropriate for
certain scenarios of use but not others.
Evaluations should therefore be careful
not to overgeneralize successes or fail-
ures of specific interaction techniques.
Rather, the scenarios and contexts of
use should be generalized to better

understand when to apply certain
techniques over others.

Leveraging the Masses During
Interaction with Machine
Learning
Most of the case studies in this article
focused on a single end user interact-
ing with a single machine-learning sys-
tem. However, the increasing prolifera-
tion of networked communities and
crowd-powered systems provides evi-
dence of the power of the masses to
collaborate and produce content. An
important opportunity exists to inves-
tigate how crowds of people might col-
laboratively drive interactive machine-
learning systems, potentially scaling
up the impact of such systems. For
example, as interactive machine learn-
ing becomes more prevalent in our
everyday applications, people should
be able to share and reuse machine
learners rather than have to start from
scratch. Moreover, people should be
able to bootstrap, build upon, and
combine learners to configure more
sophisticated data processing and
manipulation. A few have started to
explore such opportunities (for exam-
ple, Hoffman et al. [2009]; Kamar,
Hacker, and Horvitz [2012]; Law and
von Ahn [2009]), but more work
remains to fully understand the poten-
tial of multiple end users interacting
with machine-learning systems. For
example, work remains in understand-
ing how people can meaningfully
describe, compare, and search for exist-
ing machine learners in order to build
upon them, in understanding how
learners can be generalized or trans-
formed for new situations and purpos-
es, in understanding how we can cre-
ate composable learners to enable
more powerful automation, and in
understanding how we can coordinate
the efforts of multiple people interact-
ing with machine-learning systems.

Algorithmic Problems in 
Interactive Machine Learning
Research on user interactions with
interactive machine learning raises two
important technical challenges. First,
the requirement for rapid model
updates often necessitates trading off
accuracy with speed. The resulting
models are therefore suboptimal.
Although interactive machine learning
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rapid, focused, and incremental than
in traditional machine learning. This
increases the opportunities for users to
affect the learner and, in turn, for the
learner to affect the users. As a result,
the contributions of the system and
the user to the final outcome cannot
be decoupled, necessitating an
increased need to study the system
together with its potential users.

Second, explicitly studying the users
of learning systems is critical to
advancing this field. Formative user
studies can help identify user needs
and desires, and inspire new ways in
which users could interact with
machine-learning systems. User stud-
ies that evaluate interactive machine-
learning systems can reveal false
assumptions about potential users and
common patterns in their interaction
with the system. User studies can also
help to identify common barriers
faced by users when novel interfaces
are introduced. 

Finally, the interaction between
learning systems and their users need
not be limited. We can build powerful
interactive machine-learning systems
by giving more control to end users
than the ability to label instances, and
by providing users with more trans-
parency than just the learner’s predict-
ed outputs. However, more control for
the user and more transparency from
the learner do not automatically result
in better systems, and in some situa-
tions may not be appropriate or
desired by end users. We must contin-
ue to evaluate novel interaction meth-
ods with real users to understand
whether they help or hinder users’
goals.

In addition to demonstrating the
importance and potential of research
in interactive machine learning, this
article characterized some of the chal-
lenges and opportunities that current-
ly confront this field. By acknowledg-
ing and embracing these challenges,
we can move the field of interactive
machine learning forward toward
more effective interactions. We believe
this will lead not only to more capable
machine learners, but also more capa-
ble end users. 

Notes
1. All authors contributed equally to this
article.

Articles

WINTER 2014   119

2.  In this article we examine interactive
machine-learning systems in which the
human is consciously interacting with the
machine learner in order to improve it. That
is, we do not consider interactive machine-
learning systems that obtain user feedback
implicitly (for example, websites that may
automatically adapt their presentation to a
user’s click history without the user’s
knowledge).
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The Dialog State 
Tracking Challenge Series

Jason D. Williams, Matthew Henderson, 
Antoine Raux, Blaise Thomson, Alan Black, Deepak Ramachandran

Conversational systems are increasingly becoming a
part of daily life, with examples including Apple’s Siri,
Google Now, Nuance Dragon Go, Xbox, and Cortana

from Microsoft, and those from numerous startups. In the
core of a conversation system is a key component called a
dialog state tracker, which estimates the user’s goal given all
of the dialog history so far. For example, in a tourist infor-
mation system, the dialog state might indicate the type of
business the user is searching for (pub, restaurant, coffee
shop), the desired price range, and the type of food served.
Dialog state tracking is difficult because automatic speech
recognition (ASR) and spoken language understanding (SLU)
errors are common and can cause the system to misunder-
stand the user. At the same time, state tracking is crucial
because the system relies on the estimated dialog state to
choose actions — for example, which restaurants to suggest.
Figure 1 shows an illustration of the dialog state tracking
task.

Historically dialog state tracking has been done with
hand-crafted rules. More recently, statistical methods have
been found to be superior by effectively overcoming some
SLU errors, resulting in better dialogs. Despite this progress,
direct comparisons between methods have not been possible
because past studies use different domains, system compo-
nents, and evaluation measures, hindering progresss. The
Dialog State Tracking Challenge (DSTC) was initiated to
address this barrier by providing a common test bed and
evaluation framework for dialog state tracking algorithms.

n In spoken dialog systems, dialog state
tracking refers to the task of correctly inferring
the user’s goal at a given turn, given all of the
dialog history up to that turn. The Dialog
State Tracking Challenge is a research com-
munity challenge task that has run for three
rounds. The challenge has given rise to a host
of new methods for dialog state tracking and
also to deeper understanding about the prob-
lem itself, including methods for evaluation.
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Figure 1. The Dialog State Tracking Problem.

The left column shows the actual dialog system output and user input. The second column shows two SLU n-best hypotheses and their
scores. The third column shows the label (correct output) for the user’s goal. The fourth column shows example tracker output, and the
fifth column indicates correctness.
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Challenge Design
The dialog state tracking challenge studies this prob-
lem as a corpus-based task. When the challenge
starts, labeled human-computer dialogs are released
to teams, with scripts for running a baseline system
and evaluation. Several months later, a test set of
unlabeled dialogs is released. Participants run their
trackers, and a week later they return tracker output
to the organizers for scoring. After scoring, results
and test set labels are made public.

The corpus-based design was chosen because it
allows different trackers to be evaluated on the same
data, and because a corpus-based task has a much
lower barrier to entry for research groups than build-
ing an end-to-end dialog system. However when a
tracker is deployed, it will inevitably alter the per-
formance of the dialog system it is part of relative to
any previously collected dialogs. In order to simulate
this mismatch at training time and at run time, and
to penalize overfitting to known conditions, dialogs
in the test set are conducted using a different dialog
manager, not found in the training data.

The first DSTC used 15,000 dialogs between real
Pittsburgh bus passengers and a variety of dialog sys-
tems, provided by the Dialog Research Center at
Carnegie Mellon University (Black et al. 2010). The
second and third DSTCs used in total 5,510 dialogs
between paid Amazon Mechanical Turkers, who were
asked to call a tourist information dialog system and
find restaurants that matched particular constraints,
provided by the Cambridge University Dialogue Sys-
tems Group (Jurcicek, Thomson, and Young 2011).

Each DSTC added new dimensions of study. In the
first DSTC, the user’s goal was almost always fixed
throughout the dialog. In the second DSTC, the
user’s goal changed in about 40 percent of dialogs.
And the third DSTC further tested the ability of track-
ers to generalize to new domains by including entity
types in the test data that were not included in the
training data — for example, the training data
included only restaurants, but the test data also
included bars and coffee shops.

In this relatively new research area, there does not
exist a single, generally agreed on evaluation metric;
therefore, each DSTC reported a bank of metrics,
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sourced from the advisory board and participants.
This resulted in approximately 10 different metrics,
including accuracy, receiver operating characteristic
(ROC) measurements, probability calibration, and so
on. Each metric was measured on various subtasks
(such as accuracy of a particular component of the
user’s goal), and at different time resolutions (for
example, every dialog turn, just at the end, and so
on.) Every combination of these variables was meas-
ured and reported, resulting in more than 1000 meas-
urements for each entry. The measurements them-
selves form a part of the research contribution: after
the first DSTC, a correlation analysis was done to
determine a small set of roughly orthogonal metrics,
which were then reported as featured metrics in
DSTC2 and DSTC3, focusing teams’ efforts. These
featured metrics were accuracy, probability quality
(Brier score), and a measure of discrimination com-
puted from an ROC curve.

Each DSTC has been organized by an ad hoc com-
mittee, including members of the group providing
the dialog data.

Participation and Results
About nine teams have participated in each DSTC,
with global representation of the top research centers
for spoken dialog systems. Participants have mostly
been academic instutions, with a minority of corpo-
rate research labs. Results have been presented at spe-
cial sessions: DSTC1 at the annual Special Interest
Group on Discourse and Dialogue (SIGdial) confer-
ence in 2013 (Williams et al. 2013); DSTC2 at SIGdi-
al in June 2014 (Henderson, Thomson, and Williams
2014); and DSTC3 at IEEE Spoken Language Tech-
nologies (SLT) Workshop in December 2014 (forth-
coming).

Papers describing DSTC entries have broken new
ground in dialog state tracking; the best-performing
entries have been based on conditional random fields
(Lee and Eskenazi 2013), recurrent neural networks
(Henderson, Thomson, and Young 2014), and web-
style ranking (Williams 2014). At present, dialog state
trackers are able to reliably exceed the performance
of a carefully tuned hand-crafted tracker — for exam-
ple, in DSTC2, the best trackers achieved approxi-
mately 78 percent accuracy versus the baseline’s 72
percent. This is impressive considering the maximum
performance possible with the provided SLU is 85
percent, due to speech recognition errors.

Prior to the DSTC series, most work on dialog state
tracking was based on generative models; however,
the most successful DSTC entries have been discrim-
inatively trained models, and these are now the dom-
inant approach. Thus the DSTC series has had a clear
impact on the field.

Future Activities
All of the DSTC data will remain available for down-
load, including labels, output from all entries, and
the raw tracker output.1,2 We encourage researchers
to use this data for research into dialog state tracking
or for other novel uses. In addition, a special issue to
the journal Dialogue and Discourse will feature work
on the DSTC data, and we anticipate publication in
2015. In future challenges, it would be interesting to
study aspects of dialog state beyond the user’s goal —
for example, the user’s attitude and expectation. It
would also be interesting to consider turn-taking and
state tracking of incremental dialogs, where updates
are made as each word is recognized. Finally,
researchers with dialog data available who would be
interested in organizing a future DSTC are encour-
aged to contact the authors.
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Marie desJardins

ACTIVE-ating Artificial Intelligence: 
Integrating Active Learning in 
an Introductory CourseIn spring 2013, several colleagues and I received an award,

from the Hrabowski Fund for Innovation1 at the Univer-
sity of Maryland Baltimore County, to create a new class-

room, using additional funding donated by BAE Systems and
Northrup Grumman. The ACTIVE Center2 is designed to
provide a dynamic physical and virtual environment that
supports active, collaborative learning; skill mastery through
in-class problem solving; and laptop-based in-class laborato-
ry activities. The ACTIVE Center’s design was based on re-
search on the power of collaborative learning to promote
student success and retention, particularly for women, un-
derrepresented minorities, and transfer students, who bene-
fit greatly from building stronger connections with their
peers through shared active learning experiences (Zhao,
Carini, and Kuh 2006; Rypisi, Malcolm, and Kim 2009;
Kahveci, Southerland, and Gilmer 2006).

The ACTIVE Center, a 40-student classroom, includes
movable furniture (20 trapezoidal tables and 40 lightweight
rolling chairs) that is typically grouped into 10 hexagonal
table clusters but that can also be arranged into lecture-style
rows, a boardroom or seminar-style rectangular layout, or in-
dividual pair-activity tables. The room also has an Epson
Brightlink “smart projector” at the front of the room, four
flat-panel displays (which can be driven centrally by the in-
structor’s laptop or individually through HDMI ports), and
10 rolling 4 x 6 foot whiteboards for use during group prob-
lem-solving activities, as well as smaller, portable tabletop
whiteboards. The ACTIVE Center was ready for use in early
February 2014, and we moved several classes from regular
classrooms into the new space, including my undergraduate
introduction to AI (CMSC 471). 

Over the last 12 years of teaching introductory AI, I had
gradually moved toward incorporating more problems and

Copyright © 2014, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

n The Educational Advances in Artificial Intelli-
gence column discusses and shares innovative edu-
cational approaches that teach or leverage AI and its
many subfields at all levels of education (K-12, un-
dergraduate, and graduate levels). 

n This column describes my experience with using
a new classroom space (the ACTIVE Center), which
was designed to facilitate group-based active learn-
ing and problem solving, to teach an introductory ar-
tificial intelligence course. By restructuring the course
into a format that was roughly half lecture and half
small-group problem solving, I was able to signifi-
cantly increase student engagement, their under-
standing and retention of difficult concepts, and my
own enjoyment in teaching the class.
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exercises into my lecture slides and
making the class very interactive. How-
ever, I was never completely successful
at convincing students to work inde-
pendently on problem solving during
the class –— many students would get
stuck or distracted, and it was difficult
to diagnose their level of understand-
ing.  This semester, with a physical en-
vironment that was designed to facili-
tate in-class problem solving, I decided
to take full advantage of it, setting a
goal of a roughly equal mix of lecture
and problem solving.

I created a prereading assignment
for each class day that included a short
introduction to the basic concepts. I
often led off the lecture part of the
class with a mini-quiz (a slide with
questions that students ought to know
the answers to from the reading) and a
very quick recap of those basic con-
cepts. (Previously, I had never success-
fully convinced students to do the
textbook reading of Russell and
Norvig’s Artificial Intelligence: A Modern
Approach [2010] before class. Now,
most students, but not all, did this pre-
reading.) I’d then dive into the more
advanced material that wasn’t covered
in the prereading, spending around
half of the class on lecture and board-
based problem solving (taking advan-
tage of the smart projector to do screen
captures of group solutions), and the
rest of the 75-minute class period hav-
ing small groups of four or five stu-
dents working on more challenging
problems. 

During problem-solving sessions,
students would bring one of the
wheeled whiteboards to their table and
work on an assigned problem. Once
the students got used to the format,
they didn’t need any urging to get
started on their work. I didn’t assign
the groups (they evolved naturally
based on where the students chose to
sit) or roles (some groups rotated roles,
and in others, it was almost always the
same person at the whiteboard). But as
I circulated, it was obvious that every
single student in the class was engaged
with the process — paying attention,
contributing, and thinking. It was ac-
tually quite remarkable — in a class of
40 students, there was literally not one
single person who wasn’t involved in
problem solving during those parts of

the class. Moreover, I could tell which
groups understood the concepts and
were making progress and which
groups weren’t. I could work individu-
ally with groups who were stuck, and I
could identify errors that multiple
groups were making, bringing the
class’s attention back to talk about
those misconceptions with the whole
class. It was an extremely effective way
to mix coaching, remediation, and dis-
cussion.

The format did vary somewhat, in-
cluding days where lectures predomi-
nated; where lectures and problem
solving were interspersed; or “Lisp
labs,” where students used their lap-
tops to work on Lisp coding with some
instructor guidance. We also re-
arranged the room into a seminar style
layout for a class debate on Searle’s
“Minds, Brains, and Programs” (1980)
and Raymond Kurzweil’s theories
about the singularity.

I collected assessment data through
student and instructor surveys (in all
classes offered in the ACTIVE Center),
but have not yet systematically ana-
lyzed the data. I did not see a signifi-
cant difference in exam grades or over-
all course grades compared to my 2011
offering, but my anecdotal observation
is that the students did better on the
problem-solving parts of the exam but
less well on the “details of advanced
methods” questions. That makes sense:
we spent more time on problem solv-
ing and less time covering details, and
I don’t think that students “filled in
the gaps” by spending more time on
the reading. How to get both deep con-
ceptual learning and broad under-
standing of different types of methods
and techniques is a continual goal for
reflection. Some of the other chal-
lenges and ideas for the future include
managing class pacing when alternat-
ing between lecture and problem solv-
ing, designing problems of appropriate
difficulty, and creating in-class laptop-
based activities to explore AI concepts
at the implementation level.

All of my course materials (syllabus,
schedule, reading and prereading as-
signments, PowerPoint slides, which
include whole-class and group prob-
lem-solving activities, and homework
assignments) are posted on the course
website.3 Colleagues are welcome to

reuse these materials with attribution;
I would greatly appreciate any feed-
back or experience reports that you
would be willing to share. Having
taught introductory AI eight times, I
can say with confidence that despite
feeling some pressure about whether
the problem-solving format would
work well, this semester was the most
fun that I’ve had teaching an AI
course. It would be very hard to return
to a regular classroom and to a stan-
dard lecture-based presentation style. I
strongly encourage other institutions
to consider creating or retrofitting
classrooms using design practices that
would facilitate this kind of course-
work and learning environment.

Notes
1. See innovationfund.umbc.edu.
2. See active.umbc.edu.
3. See www.csee.umbc.edu/courses/under-
graduate/CMSC471/spring14.
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AAAI-15 and IAAI-15 Are
Almost Here!
The Twenty-Ninth AAAI Conference on
Artificial Intelligence (AAAI-15) and the
Twenty-Seventh Conference on Innovative
Applications of Artificial Intelligence (IAAI-
15) will be held January 25–30 at the Hyatt
Regency Austin in Austin, Texas, USA.
Austin is home to one of the largest and
oldest communities of AI researchers in the
world, with more than a dozen AI-related
labs at the University of Texas at Austin. 

Included here are a few highlights, but
for the full program, links, and schedule
information, please visit aaai.org/aaai15.

Robotics!
AAAI will feature a host of robotics exhibi-
tions, demonstrations, and invited talks. In
addition to the AI Robotics Early Career
Spotlight Talk and Robotics in Texas pro-
gram, a few highlights of the Robotics Festi-
val will include the following:

50 Years of AI & Robotics 
please join us for this special panel celebrat-
ing the 50th anniversary of Shakey, which
will be held on Tuesday, January 27,
cosponsored by AAAI and the IEEE Robotics
and Automation Society, the IEEE Interna-
tional Conference on Robotics and Automa-
tion and the Robotics: Science and Systems
Conference. panelists will include Edward
Feigenbaum, peter Hart, and Nils Nilsson.

RoboCup Soccer Exhibition
Given the recent expansion of interest in
intelligent robotics, AAAI and the RoboCup
Federation, with the help of NSF, are co-
sponsoring a RoboCup soccer exhibition
match at AAAI-15 (January 26–27) to show-
case the state-of-the-art in robotics soccer to
the broad artificial intelligence research
community and spur additional interest in
this exciting testbed for intelligent systems. 

The RoboCup competitions have pro-
moted research on artificial intelligence and
robotics since 1997.  One of their main foci

Copyright © 2014, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

is the worldwide popular game of soccer,
with the aim to build fully autonomous
cooperative multi-robot systems that per-
form well in dynamic and adversarial envi-
ronments.

The participating teams in the AAAI-15
event will be Upennalizers from The Uni-
versity of pennsylvania, UT Austin Villa
from the University of Texas at Austin, and
rUNSWift from the University of New South
Wales.  Each team won a championship at
the 2014 international competition (in the
humanoid league, 3D simulation league,
and Standard platform League respectively).
They will demonstrate a game according to
the regulations of the Standard platform
League, in which all teams use identical
Aldebaran Nao robots. 

Robotics Exhibition
Research groups and robotics companies
will participate in the AAAI Robotics Exhi-
bition, demonstrating their robot systems
throughout AAAI-15. The Exhibition will
span the AAAI-15 Open House program on
monday, January 26 through Thursday, Jan-
uary 29. The open house will be open to
high-school students and other selected
members of the general public. Demonstra-
tions that highlight progress in robotics
during the past five years will be featured. 

NSF-Sponsored Workshop on 
Research Issues at the 
Boundary of AI and Robotics
This full-day workshop on January 25 is an
initiative resulting from cooperation
between AAAI and the IEEE. It is designed
to bring together AI experts, robotics
experts and program directors to compile a
list of recommendations to funding agen-
cies, professional organizations and indi-
vidual researchers for how to push the
boundary of AI and robotics.

Students!
As part of AAAI’s outreach to students in
2015, AAAI-15 will include many special

Winter News from the
Association for the 
Advancement
of Artificial Intelligence

AAAI News programs specifically for students, includ-
ing the following:

Student Newcomer Lunch: AAAI will holds
its inagural Student Newcomer Lunch on
Sunday, January 25, at 1:00 pm. This lunch is
designed to welcome first-time students to
the conference and give them an opportu-
nity to meet other participants before the
launch of the main conference. 

AAAI-15 Open House: The AAAI-15 Open
House will be held monday, January 26, for
high-school students in the Austin area, the
general public, graduate and undergraduate
students, and established AI researchers.
The latest work in many areas of AI will be
showcased. 

Breakfast with Champions: A Women’s
Mentoring Event: AAAI is holding an inaugu-
ral women’s mentoring event between
women students and senior women in
CS/AI. Breakfast with Champions will be
Wednesday morning, January 28 at 7:15 Am.
This event follows on the successful foot-
steps of the Doctoral Consortium mentor-
ing program. 

Information about these and all student
programs is available on the AAAI Registra-
tion form at www.regonline.com/aaai15
and at http://movingai.com/AAAI15/.

ICWSm-15
The Ninth International AAAI Conference
on Web and Social media (ICWSm) will be
held may 26-29, 2015 in Oxford, England,
UK. 

January 18: Abstracts Due
January 23: papers, posters, and Demos 
Due. See www.icwsm.org for details.

2015 AAAI Spring Symposia
The Twenty-Eighth AAAI Spring Sympo-
sium Series will be held march 23–25 at
Stanford University, in cooperation with
the Stanford Computer Science Depart-
ment. The eight symposia are (1) Ambient
Intelligence for Health and Cognitive
Enhancement; (2) Applied Computational
Game Theory; (3) Foundations of Autono-
my and Its (Cyber) Threats: From Individu-
als to Interdependence; (4) Knowledge Rep-
resentation and Reasoning: Integrating
Symbolic and Neural Approaches; (5) Logi-
cal Formalizations of Commonsense Rea-
soning; (6) Socio-Technical Behavior min-
ing: From Data to Decisions; (7) Structured
Data for Humanitarian Technologies: per-
fect Fit or Overkill? and (8) Turn-Taking and
Coordination in Human-machine Interac-
tion.

February 27, 2015 is the general registra-
tion deadline. The website is located at
www.aaai.org/Symposia/Spring/
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Conferences Held by 
AAAI Affiliates

Twenty-Eighth International Florida
AI Research Society Conference.
FLAIRS-15 will be held May 18–20,
2015 in Hollywood, Florida, USA

URL: www.flairs-28.info

Twenty-Fifth International Confer-
ence on Automated Planning and
Scheduling. ICAPS-15 will be held
June 7–11, 2015 in Jerusalem, Israel

URL: icaps15.icaps-conference.org

International Joint Conference on
Artificial Intelligence. IJCAI-15 will
be held July 25 – August 1, 2015 in
Buenos Aires, Argentina.

URL: ijcai-15.org

Conferences Held in
Cooperation with AAAI

10th ACM/IEEE International Con-
ference on Human-Robot Interac-
tion. HRI 2015 will be held March 1–4
in Portland, Oregon USA

URL: humanrobotinteraction.org/2015

7th International Conference on
Agents and Artificial Intelligence.
ICAART 2014 will be held January 10–
12 in Lisbon, Portugal

URL: www.icaart.org

8th International Joint Conference
on Biomedical Engineering Systems
and Technologies. BIOSTEC 2015 will
be held January 12–15 in Lisbon, Por-
tugal

URL: www.biostec.org

4th International Conference on
Pattern Recognition Applications
and Methods. ICPRAM 2015 will be
held January 10–12 in Lisbon, Portu-
gal

URL: www.icpram.org

17th International Conference on
Enterprise Information Systems.
ICEIS 2015 will be held April 27–30,
2015, in Barcelona, Spain

URL: www.iceis.org

15th International Conference on
Artificial Intelligence and Law.
ICAIL 2015 will be held June 8–12, in
San Diego, California, USA

URL: sites.sandiego.edu/icail

28th International Workshop on
Qualitative Reasoning. QR 2015 will
be held August 10–12, in Minneapolis,
MN, USA

URL: qr15.sift.net
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AAAI Sponsored 
Conferences

Twenty-Ninth AAAI Conference on
Artificial Intelligence. AAAI-15 will be
held January 25–30 in Austin, Texas,
USA.

URL: www.aaai.org/aaai15

AAAI Spring Symposium. The AAAI
Spring Symposium Series will be held
March 23–25 in Palo Alto, CA USA.

URL: www.aaai.org/Symposia/Spring/
sss15.php

The 9th International AAAI Confer-
ence on Weblogs and Social Media.
ICWSM 2015 will be held May 26–29
in Oxford, UK.

URL: www.icwsm.org/2015

This page includes forthcoming AAAI sponsored conferences,
conferences presented by AAAI Affiliates, and conferences held
in cooperation with AAAI. AI Magazine also maintains a cal-

endar listing that includes nonaffiliated conferences at
www.aaai.org/Magazine/calendar.php.

AAAI Conferences Calendar

Calendar
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DEVELOPMENTAL 
ROBOTICS
From Babies to Robots
Angelo Cangelosi and 
Matthew Schlesinger
A comprehensive 
overview of an inter-
disciplinary approach 
to robotics that takes 
direct inspiration from 
the developmental and 
learning phenomena 
observed in children’s 
cognitive development.
Design Thinking, Design Theory series  
408 pp., 99 illus., $60 cloth

UNDERSTANDING 
BELIEFS
Nils J. Nilsson
What beliefs are, what 
they do for us, how we 
come to hold them, and 
how to evaluate them. 
The MIT Press Essential Knowledge series 
176 pp., 5 illus., $12.95 paper

The MIT Press

The MIT Press mitpress.mit.edu

May 26–29 2015
Oxford, UK

www.icwsm.org

I CWSM
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The Twenty-Ninth AAAI 
Conference on Artificial Intelligence

The Twenty-Seventh Conference on
Innovative Applications of Artificial Intelligence

January 25–30 2015

Austin, Texas USA

www.aaai.org/aaai15
www.aaai.org/iaai15

AAAI-15 Austin, Texas USA
The First Winter AI Conference!
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