

End-User Software Engineering and Distributed Cognition

Margaret Burnett, Christopher Bogart, Jill Cao,
Valentina Grigoreanu, Todd Kulesza, Joseph Lawrance

Oregon State University, Corvallis, OR, USA

{burnett,bogart,caoch,grigorev,kulesza,lawrance}@eecs.oregonstate.edu

Abstract

End-user programmers may not be aware of many

software engineering practices that would add greater
discipline to their efforts, and even if they are aware of
them, these practices may seem too costly (in terms of
time) to use. Without taking advantage of at least some
of these practices, the software these end users create
seems likely to continue to be less reliable than it could
be. We are working on several ways of lowering both
the perceived and actual costs of systematic software
engineering practices, and on making their benefits
more visible and immediate. Our approach is to
leverage the user’s cognitive effort through the use of
distributed cognition, in which the system and user
collaboratively work systematically to reason about
the program the end user is creating. This paper
demonstrates this concept with a few of our past
efforts, and then presents three of our current efforts in
this direction.

1. Introduction

This workshop’s call for papers stated its specific
focus to be on “the software engineering that is
required to make <end-user programming> a more
disciplined process, while still shielding the end user
from the complexities of greater discipline”
(http://www.sei.cmu.edu/isis/workshops/seeup-2009/).
This is an interesting issue from the perspective of the
user’s time and priorities. What might cause end-user
programmers to become “more disciplined,” and how
would this impact their cost-benefit trade-offs of
investing the time to do so versus the time/trouble they
might save by doing so?

Our position is that we do not expect end-user
programmers to voluntarily elect to become more
disciplined unless doing so either (1) is perceived by

users to have obvious pay-offs given their own
priorities or (2) is so low in cost, they can afford to
become more disciplined without worrying about the
time cost.

To keep the cost of discipline low, end-user
software engineering must be a collaboration between
the system and the user1. The system’s roles are to pay
much of the cost of adding discipline and to make clear
low-cost steps the user can perform to take advantage
of that discipline and the benefits of doing so. We
hypothesize that, if the user perceives reasonably low
costs and useful benefits, the disciplined approaches
suggested by the system will often seem more
attractive than ad-hoc approaches, and users will
follow them. Our previous work along these lines
empirically supports this hypothesis.

Distributed cognition “extends the reach of what is
considered cognitive beyond the individual to
encompass interactions between people and with re-
sources and materials in the environment” [8]. In
system-user collaborations to support the direction we
have just described, by definition, the user does some
of the reasoning and the system does some of the
reasoning. The system’s contribution to this reasoning
may be simple, such as helping users remember
judgments they have made so far, or complex, such as
performing static or dynamic analysis of source code
to deduce possible errors. The rest of this paper
provides examples as to how such distributed
cognition approaches can be incorporated into end-
user software development environments to encourage
greater discipline by end-user programmers.

1 unless there are professional software developers involved

to provide the discipline, as in the work of Fischer and
Giaccardi [6] and Costabile et al. [5].

SEEUP’09, May 23, 2009, Vancouver, Canada
978-1-4244-3738-2/09/$25.00 © 2009 IEEE ICSE’09 Workshop1

2. Examples from our Previous Work in
End-User Software Engineering

Our What You See Is What You Test (WYSIWYT)
methodology for testing spreadsheets [3, 16]
demonstrates how distributed cognition can augment
end users’ abilities to use more disciplined approaches.
In the case of WYSIWYT, the increased discipline is
in testing and debugging.

With WYSIWYT, as a user incrementally develops
a spreadsheet, he or she can also test that spreadsheet
incrementally yet systematically. The basic idea is that,
at any point in the process of developing the
spreadsheet, the user can validate any value that he or
she notices is correct. Behind the scenes, these
validations are used to measure the quality of testing in
terms of a test adequacy criterion. These measurements
are communicated by visual decorations to reflect the
new “testedness” state of the spreadsheet, to encourage
users to direct their testing effort to the cells the system
has systematically identified as needing the most
attention.

For example, suppose that a teacher is creating a
student grades spreadsheet, as in Figure 1. During this
process, whenever the teacher notices that a value in a
cell is correct, she can check it off (“validate” it). The
result of the teacher’s validation action is that the
colors of the validated cell’s borders become more
blue, indicating that data dependencies between the
validated cell and cells it references have been
exercised in producing the validated values.

A red border means untested, a blue border means
tested, and shades of purple (i.e., between red and
blue) mean partially tested. From these border colors,
the teacher is kept informed of which areas of the
spreadsheet are tested and to what extent. Thus, in the
figure, row 4’s Letter cell’s border is partially blue
(purple), because some of the dependencies ending at
that cell have now been tested. Testing results also
flow upstream against dataflow to other cells whose
formulas have been used in producing a validated
value. In our example, all dependencies ending in row

4’s Course cell have now been exercised, so that cell’s
border is now blue.

The border colors support distributed cognition by
remembering (and figuring out and updating) a “things
to test” list for the teacher. This distributed cognition
allows the teacher to test in a more disciplined way
than she might otherwise do, because it constructs its
things-to-test statuses using a formal test adequacy
criterion (du adequacy) that the user is not likely to
know about.

The checkboxes further support distributed
cognition by remembering for the user the specifics of
testing that was done. Here the checkmark reminds the
teacher that a cell’s value has been validated under
current inputs. As with the border colors, the
distributed cognition goes further than just
remembering things done directly—it also manages the
“things tested” set by changing the contents of the
checkboxes when circumstances change. For example,
an empty checkbox indicates that the cell’s value was
validated, but the value was different than the one
currently on display. Finally, the system helps the
teacher manage her testing strategy by showing a
question mark where validating the cell would increase
testedness.

Checkmarks and border colors assist cognition
about things to test and things tested successfully.
There is also a fault localization functionality for
things tested unsuccessfully. For example, suppose our
teacher notices that row 5’s Letter grade is erroneous,
which she indicates by X’ing it out instead of checking
it off. Row 5’s Course average is obviously also
erroneous, so she X’s that one too. As Figure 1 shows,
both cells now contain pink interiors, but Course is
darker than Letter because Course contributed to two
incorrect values (its own and Letter’s) whereas Letter
contributed to only its own. These colorings are
another example of distributed cognition. They make
precise the teacher’s reasoning/recollection about cell
formulas that could have contributed to the bad value
and direct her attention to the most implicated of these,
thereby encouraging her to systematically consider all
the possible culprits in priority order to find the ones
that need fixing.

Recall our hypothesis from Section 1 that it is
necessary to keep the cost of discipline low.
WYSIWYT gives us a vehicle for considering the cost
of discipline: Just why would a user whose interests
are simply to get their spreadsheet results as efficiently
as possible choose to spend extra time learning about
these unusual new checkmarks, let alone think
carefully about values and whether they should be
checked off?

Figure 1: WYSIWYT supports systematic
testing for end users, to help the user test and
debug spreadsheet formulas [16].

2

To succeed at enticing the user to use discipline, we
require a strategy that can motivate these users to make
use of software engineering devices, can provide the
just-in-time support they need to effectively follow up
on this interest, and will not require the user to spend
undue time on these devices.

We call our strategy for enticing the user down this
path Surprise-Explain-Reward [21]. The strategy
attempts to first arouse users’ curiosity about the
software engineering devices through surprise, and to
then encourage them, through explanations and
rewards, to follow through with appropriate actions.
This strategy has its roots in three areas of research:
research about curiosity [13], Blackwell’s model of
attention investment [2], and minimalist learning
theory [4].

The red borders and the checkboxes in each cell,
both of which are unusual for spreadsheets, are
therefore intended to surprise the user, to arouse
curiosity. These surprises are non-intrusive: users are
not forced to attend to them if they view other matters
to be more worthy of their time. However, if they
become curious about these features, users can ask the
colors or checkboxes to explain themselves at a very
low cost, simply by hovering over them with their
mouse. Thus, the surprise component delivers the user
to the explain component.

The explain component is also very low in cost. In
its simplest form, it explains the object in a tool tip.
For example, if the user hovers over a checkbox that
has not yet been checked off, the tool tip says: “If this
value is right, √ it; if it’s wrong, X it. This testing
helps you find errors.” Thus, it explains the semantics
very briefly, gives just enough information for the user
to succeed at going down this path, and gives a hint at
the reward.

The main reward is finding errors, which is
achieved by checking values off and X’ing them out to
narrow down the most likely locations of formula
errors. A secondary reward is a “well tested” (high
coverage) spreadsheet, which at least shows evidence
of having fairly thoroughly looked for errors. To help
achieve testing coverage, question marks point out
where more decisions about values will make progress
(cause more coverage under the hood, cause more
color changes on the surface), and the progress bar at
the top shows overall coverage/testedness so far. Our
empirical work has shown that these devices are both
motivating and that they lead to more effectiveness [3,
17].

3. Current Research Directions

3.1 More disciplined debugging of machine-
learned programs

The recent increase in machine learning’s presence
in a variety of desktop applications has led to a new
kind of program that needs debugging by the end user:
programs written (learned) by machines. Since these
learned programs are created by observing the user’s
data and reside on the user’s machine, the only person
present to fix them if they go wrong is the user.

Traditional methods for end users to improve the
logic of machine-learned programs have been
restricted to re-labeling the output of these programs.
For example, imagine a movie recommendation system
that uses machine-learning techniques to make
intelligent recommendations based on a user’s
previously viewed movies. This system allows the user
to label the suggestions by marking each as something
they are either interested in or not interested in. Such
debugging, however, is ad hoc. The user can neither
know how many recommendations to label before the
system will improve nor know how far-reaching an
observed improvement is, and therefore, cannot plan or
be strategic: the entire process is based solely on the
luck of just the right inputs arriving in a timely way.

We are working on a more disciplined approach to
debugging machine-learned programs to remove this
complete reliance on fortuitous inputs arriving. In our

Why will this message
be filed to <folder1>?

Why won’t this message
be filed to <folder2>?

Figure 2: An interactive visualization for
showing end users the relative importance
of different words to a machine-learned
program’s decision-making. For example,
the word “email” is fairly neutral in
classifying messages to folder1 (pink), but
is forbidden for folder2 messages (blue).
Users are able to drag any bar up or down to
explicitly change the logic of the learned
program [10].

3

approach, end users directly fix the logic of a learned
program that has gone wrong, and the machine keeps
them apprised of the greater impacts of their fixes.
Two keys to our approach are (a) an interactive
explanation of the learned program’s logic and (b) a
machine-learning algorithm that is capable of
accepting and integrating user-provided feedback. The
approach is more disciplined than traditional
approaches in that it removes much of the element of
luck in the arrival of suitable inputs, and also employs
distributed cognition devices to enable users to predict
the impacts of their logic changes.

 We have designed and implemented our first
prototype [10] aimed at meeting these goals. The
domain we used for this prototype was automatically
filing the user’s incoming email messages to the
correct folder. Our approach was inspired by the
Whyline [9]. In our variant of why-oriented
debugging, users debug through viewing and changing
answers to “why will” and “why won’t” questions.
Examples of the questions and manipulable answers in
our prototype are shown in Figure 2. As soon as the
user manipulates these answers, the system not only
updates the result of the input they are working with
(in this case, the particular email message), but also
apprises them of how other messages in their email
system would be categorized differently given these
changes, in essence running a full regression test.

Using this prototype, we analyzed barriers end users
faced when attempting to debug using such an
approach [10]. The most common obstacle for users
was determining which sections of the learned
program’s logic they should modify to achieve the
desired behavior changes on an ongoing basis. The
complete set of barriers uncovered is being used to
inform the design of our continuing work in enabling
end users to debug programs that are learned from that
particular user’s data.

3.2 Strategies as agents of discipline for males
and females

Given their lack of formal training in software
engineering, end-user programmers who attempt to
reason about their programs’ correctness are likely to
do so in an ad-hoc way rather than using a systematic
strategy. Strategy refers to a reasoned plan or method
for achieving a specific goal. It involves intent, but the
intent may change during the task. Until recently, little
has been known about the strategies end-user
programmers employ in reasoning about and
debugging their programs. We have been working to
help close this gap, and to devise ways to better

support end-user programmers’ strategic efforts to
reason about program correctness.

The WYSIWYT approach described in Section 2
promotes debugging strategies based on testing. One
problem with testing-based strategies is that they do
not seem to be equally attractive to male and female
end-user programmers. In a recent study, we found
males both preferred testing-based strategies more, and
were more effective with them, than females [18]. This
was also the case for dataflow strategies (Figure 3). On
the other hand, the same study showed that code
(formula) inspection strategies were more effective for
females than for males. Gender differences in
approaches to end-user software development have
also been reported in debugging feature usage [1] and
in end-user web programming [15].

In fact, of the eight debugging strategies we learned
about in our study of spreadsheet work—Testing,
Code Inspection, Specification Following, Dataflow,
To-Do Listing, Color Following, Formula Fixing, and
Spatial—seven (all but Spatial) had gender differences
in ties to success at fixing spreadsheet formula errors
[18]. In a follow-up study on strategies employed by a
different population at the border between end-user
programmers and professional developers, namely IT
professionals debugging system administration scripts,
the results on what debugging strategies were used
were nearly the same, with a few additions due to
differences in resources and paradigm [7]. The
resulting list of ten end-user debugging strategies is
shown in Table 1.

We are now beginning to explore how to explicitly
support strategies that seem particularly attractive to
one or the other gender, but are not yet well supported
in end-user software development environments. For
example, females’ most effective strategies, namely
Code Inspection, To-Do Listing, and Specification
Checking, are not supported in spreadsheet software
[18]. One example of an approach to supporting code
inspection would be adding an “inspectedness” state to
cell formulas, similar to the “testedness” state
supported by WYSIWYT. This way, distributed

Figure 3: Correlation between total bugs fixed
and number of dataflow following instances.
Left: male (significant), right: female (not
significant) [18].

4

cognition in the system environment could help users
track which formulas have been inspected and judged
correct or incorrect. (The spreadsheet auditing product
described in [19] shows one possible approach for
this.)

In the study of IT professionals’ debugging, one
interesting way in which females used Code Inspection
effectively was by looking up examples of similar
formulas to fix errors in the spreadsheet, after already
having found the error [7]. This is a repurposing of
code inspection for debugging purposes that has little
support in debugging tools, either for professional
developers or for end-user programmers. An idea
along these lines that we are exploring is that part of
the cognitive effort of searching for and memorizing
related formulas could be reduced by offloading to the
software the task of finding related formulas and
displaying them (external memory).

Thus, the goal of this work is to encourage the use
of disciplined, strategy-based problem solving by end-
user programmers through distributed cognition
approaches that support a variety of strategies. We

hypothesize that such support will increase the
discipline used in end-user programmers’ problem-
solving and, as a result, will increase male and female
end-user developers’ productivity and success at
debugging their programs.

3.3 How information foraging theory can
inform tools to promote discipline

The theme of this paper is that distributed cognition
can help promote discipline for end-user programmers,
but beyond this basic point, it would be helpful to
developers of tools for end-user programmers to have
guidance that is more concrete and prescriptive. We
believe information foraging theory can provide such
guidance.

Information foraging theory models a person’s
search for information as a hunt for prey, guided by
scent. The prey is the information they are seeking.
The scent is the user’s estimate of relevance, which the
user derives from cues in the environment. The hunt
for relevant information then proceeds from location to
location within that environment, each time following
the most salient cue. Thus the topology of that
information space and the scent of the cues predict
how well the user will be able to navigate to the most
needed information. Information foraging theory was
proposed as a general model of information seeking
[14], but has primarily been applied to web browsing.
We have been researching the applicability of this
theory to people’s information-seeking behavior in
software maintenance. In our studies to date on
professional programmers working in Java,
information foraging theory predicted people’s
navigation behavior when debugging as well as the
aggregate human wisdom of a dozen programmers,
and it was also effective at picking the right locations
to focus on when debugging [11, 12].

Because cues are externalizations of scent
(relevance), following cues is a strategic way to
eliminate large portions of the code that must be
considered in tracking down a bug. Cues can be found
in both the GUI and in the software artifacts
themselves. For example, variable names, component
names, pictorial icons that seem to represent the
relevant functionalities, are all cues. Tool feedback,
such as the highlighted cells of WYSIWYT’s fault
localization, are the system’s way of enhancing
distributed cognition about where to navigate. The user
can also enhance this distributed cognition through
what Pirolli and Card term enrichment.

Pirolli defines enrichment as the extra work an
information seeker does to enhance the information
density or topology of the space they are working in.

Table 1. Strategies in finding/fixing bugs [7].

Strategy Definition

Direct Matches

Testing Trying out different values to
evaluate the resulting values.

Code Inspection Examining code to determine its
correctness.

Specification
Checking

Comparing descriptions of what the
script should do with the script’s
code.

Dataflow Following data dependencies.
Spatial Following the spatial layout of the

code.

Generalized Matches
Feedback
Following

Using system-generated feedback to
guide their efforts.

To-Do Listing Indicating explicitly the
suspiciousness of code (or lack of
suspiciousness).

New Strategies

Control Flow Following the flow of control (the
sequence in which instructions are
executed).

Help Getting help from people or
resources.

Proceed as in Prior
Experience

Recognizing a situation (correctly or
not) as one experienced before, and
using that prior experience as a
blueprint of next steps to take.

5

Pirolli [14] studied an analyst flipping through a pile of
magazines, cutting out articles to examine more closely
later. The information density of this smaller pile of
articles would make later information seeking go more
quickly. Many software engineering tools and
practices are about enrichment. Professional
developers comment code, draw UML diagrams, write
specifications, document changes, and link these all
together to create an information topology that allows
developers to more quickly get to useful information
about the program. Some enrichment is informal as
well, such as maintaining “to do” lists and sketching
diagrams. These little notes and diagrams users create
in a working space are in essence a new user-defined
patch whose purpose is to help the user process
information quickly. In these ways, enrichment adds to
distributed cognition.

These constructs of information foraging theory—
scent, cues, topology, and enrichment—thus suggest a
design strategy for tools aimed at encouraging
discipline in end-user programmers. First, identify
what questions the tool is trying to support. Then,
given these questions, choose the scent (form of
relevance) that the tool will support in order to answer
them. Then choose a topology and cues to allow
following that scent.

For example, if the question being supported is
“Why did…”, the relevant scent could be the trail of
dynamic state, the cues could be “invoked” edges
between each called function/component as well as
their names, and the topology could connect these cues
to the function’s states at the time they were called so
that the user can step along the call sequence with each
function’s details (as in the Whyline [9]).

Topology and choice of cues are interdependent.
The topology needs to allow a user to navigate to the
relevant information called out by the cues, and the
cues (and thus distributed cognition) need to emanate
scent to attract the user down appropriate paths in the
topology. Finally, the system should allow the user to
easily enrich the cues and topology to further enhance
their working environment’s distributed cognition.

Tools based on information foraging theory could
also promote program maintainability. For example,
tools based on information foraging theory could
evaluate and suggest improvements to words, labels,
pictures, and explicit connections in programs and
their associated artifacts, so that cues in these artifacts
would emanate stronger and more precise scent.

In the service of reuse, tools based on information
foraging theory could serve as distributed cognition
elements connected to cues, topology, or enrichment,
to help people get answers to reuse questions [20] such
as: (1) I know generally what I want; which

components are relevant? (2) There is a component
that I’ve used before from this repository, but I forget
the name and several other details of it; where is it? (3)
This component is not quite what I need; which other
components are similar?

As these examples show, information foraging
theory provides a basic foundation from which design
ideas can be derived on how to promote disciplined
approaches to navigation-oriented needs in end-user
software development.

4. Conclusion

As we have shown, tools based on distributed
cognition can promote more disciplined behavior by
end-user programmers. Distributed cognition works
because it allows the system to contribute part of the
reasoning and memory, so that users do not have to do
everything in their own heads in order to follow
disciplined approaches. Our empirical results over the
years have provided encouraging evidence that this
approach can not only encourage software engineering
discipline, but can do so in a way that tears down some
barriers that, in current tools, seem to
disproportionately target female end-user
programmers. One key to reaping these benefits is
keeping the costs of using these tools low, and another
is keeping the benefits to the targeted users high, so
that users’ perception of the costs/benefits/risks
involved will make them want to use these devices.

5. Acknowledgments

This work was supported in part by an IBM Faculty
Award, by the Air Force Office of Scientific Research,
and by NSF ITR-0325273 and IIS-0803487. We are
grateful to our colleagues in the EUSES Consortium
for helpful discussions, feedback, and ideas, and to
Laura Beckwith, Rachel Bellamy, Curt Cook, Paul
ElRif, Xiaoli Fern, Mark Fisher, Cory Kissinger,
Andrew Ko, Vaishnavi Narayanan, Ian Oberst, Kyle
Rector, Stephen Perona, Gregg Rothermel, Joseph
Ruthruff, Amber Shinsel, Simone Stumpf, Neeraja
Subrahmaniyan, Susan Wiedenbeck, Weng-Keen
Wong, and our former students and colleagues for their
contributions to this work.

6. References

[1] L. Beckwith, M. Burnett, S. Wiedenbeck, C. Cook, S.
Sorte, and M. Hastings, “Effectiveness of End-User
Debugging Software Features: Are There Gender Issues?”
ACM Conference on Human Factors in Computing Systems,
Portland, Oregon, USA, 2005, pp. 869-878.

[2] A. Blackwell, “First Steps in Programming: A Rationale
for Attention Investment Models,” IEEE Symposium on

6

Human-Centric Computing Languages and Environments,
Arlington, Virginia, USA, Sept. 2002, pp. 2-10.

[3] M. Burnett, C. Cook, and G. Rothermel, “End-User
Software Engineering,” Communications of the ACM 47(9),
ACM Press, Sept. 2004, pp. 53-58.

[4] J. M. Carroll and M. B. Rosson, “Paradox of the Active
User” (J. M. Carroll Ed.), Interfacing Thought, MIT Press,
Cambridge, Massachusetts, USA, 1987, pp. 80-111.

[5] M. F. Costabile, D. Fogli, P. Mussio, and A. Piccinno,
“End-User Development: The Software Shaping Workshop
Approach” (H. Lieberman, F. Paterno, V. Wulf Eds.), End-
User Development, Springer, Dordrecht, Netherlands, 2006,
pp. 183-205.

[6] G. Fischer and E. Giaccardi, “Meta-Design: A
Framework for the Future of End-User Development” (H.
Lieberman, F. Paterno, V. Wulf Eds.), End-User
Development, Springer, Dordrecht, Netherlands, 2006, pp.
427-457.

[7] V. Grigoreanu, J. Brundage, E. Bahna, M. Burnett, P.
ElRif, and J. Snover, “Males’ and Females’ Script
Debugging Strategies,” International Symposium on End-
User Development, Siegen, Germany, published as Lecture
Notes in Computer Science 5435 (V. Pipek et al., eds.),
Springer-Verlag, Mar. 2009, to appear.

[8] J. Hollan, E. Hutchins, and D. Kirsh, “Distributed
Cognition: Toward a New Foundation for Human-Computer
Interaction Research,” ACM Trans. Computer-Human
Interaction 7, 2000, pp. 174-196.

[9] A. Ko, and B. Myers, “Designing the Whyline: A
Debugging Interface for Asking Questions about Program
Behavior,” ACM Conference on Human Factors in
Computing Systems, Vienna, Austria, Apr. 2004, pp. 151-
158.

[10] T. Kulesza, W.-K. Wong, S. Stumpf, S. Perona, R.
White, M. Burnett, I. Oberst, and A. Ko, “Fixing the
Program My Computer Learned: Barriers for End Users,
Challenges for the Machine,” ACM Conference on Intelligent
User Interfaces, Sanibel Island, Florida, USA, Feb. 2009, to
appear.

[11] J. Lawrance, R. Bellamy, M. Burnett, and K. Rector,
“Using Information Scent to Model the Dynamic Foraging
Behavior of Programmers in Maintenance Tasks,” ACM
Conference on Intelligent User Interfaces, Florence, Italy,
Apr. 2008, pp. 1323-1332.

[12] J. Lawrance, R. Bellamy, M. Burnett, and K. Rector,
“Can Information Foraging Pick the Fix? A Field Study,”

IEEE Symposium on Visual Languages and Human-Centric
Computing, Herrsching am Ammersee, Germany, Sept.
2008, pp. 57-64.

[13] G. Lowenstein, “The Psychology of Curiosity,”
Psychological Bulletin 116(1), American Psychological
Association Press, Washington D.C., USA, 1994, pp. 75-98.

[14] P. Pirolli and S. Card, “Information Foraging,”
Psychological Review 106, American Psychological
Association Press, Washington D.C., USA, 1999, pp. 643-
675.

[15] M. B. Rosson, H. Sinha, M. Bhattacharya, and D. Zhao,
“Design Planning in End-User Web Development.” IEEE
Symposium on Visual Languages and Human-Centric
Computing. Coeur d’Alène, Idaho, USA, 2007, pp. 189-196.

[16] G. Rothermel, M. Burnett, L. Li, C. DuPuis, and A.
Sheretov, “A Methodology for Testing Spreadsheets,” ACM
Trans. Software Engineering and Methodology 10(1), ACM
Press, Jan. 2001, pp. 110-147.

[17] J. Ruthruff, A. Phalgune, L. Beckwith, M. Burnett, and
C. Cook, “Rewarding Good Behavior: End-User Debugging
and Rewards,” IEEE Symposium on Visual Languages and
Human-Centric Computing, Rome, Italy, Sept. 2004, pp.
115-122.

[18] N. Subrahmaniyan, L. Beckwith, V. Grigoreanu, M.
Burnett, S. Wiedenbeck, V. Narayanan, K. Bucht, R.
Drummond, and X. Fern, “Testing vs. Code Inspection vs.
What Else? Male and Female End Users’ Debugging
Strategies,” ACM Conference on Human Factors in
Computing Systems, Florence, Italy, Sept. 2008, pp. 617-626.

[19] N. Subrahmaniyan, M. Burnett, and C. Bogart,
“Software Visualization for End-User Programmers: Trial
Period Obstacles,” ACM Symposium on Software
Visualization, Herrsching am Ammersee, Germany, Sept.
2008, pp. 135-144.

[20] R. Walpole and M. Burnett, “Supporting Reuse of
Evolving Visual Code,” IEEE Symposium on Visual
Languages, Capri, Italy, Sept. 1997, pp. 68-75.

[21] A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L.
Casburn, C. Cook, M. Durham, and G. Rothermel.
“Harnessing Curiosity to Increase Correctness in End-User
Programming,” ACM Conference on Human Factors in
Computing Systems, Ft. Lauderdale, Florida, USA, Apr.
2003, pp. 305-312.

7

