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Abstract  

 
End-user programmers may not be aware of many 

software engineering practices that would add greater 
discipline to their efforts, and even if they are aware of 
them, these practices may seem too costly (in terms of 
time) to use. Without taking advantage of at least some 
of these practices, the software these end users create 
seems likely to continue to be less reliable than it could 
be. We are working on several ways of lowering both 
the perceived and actual costs of systematic software 
engineering practices, and on making their benefits 
more visible and immediate. Our approach is to 
leverage the user’s cognitive effort through the use of 
distributed cognition, in which the system and user 
collaboratively work systematically to reason about 
the program the end user is creating. This paper 
demonstrates this concept with a few of our past 
efforts, and then presents three of our current efforts in 
this direction.   
 

1. Introduction  

This workshop’s call for papers stated its specific 
focus to be on “the software engineering that is 
required to make <end-user programming> a more 
disciplined process, while still shielding the end user 
from the complexities of greater discipline” 
(http://www.sei.cmu.edu/isis/workshops/seeup-2009/). 
This is an interesting issue from the perspective of the 
user’s time and priorities. What might cause end-user 
programmers to become “more disciplined,” and how 
would this impact their cost-benefit trade-offs of 
investing the time to do so versus the time/trouble they 
might save by doing so? 

Our position is that we do not expect end-user 
programmers to voluntarily elect to become more 
disciplined unless doing so either (1) is perceived by 

users to have obvious pay-offs given their own 
priorities or (2) is so low in cost, they can afford to 
become more disciplined without worrying about the 
time cost.   

To keep the cost of discipline low, end-user 
software engineering must be a collaboration between 
the system and the user1. The system’s roles are to pay 
much of the cost of adding discipline and to make clear 
low-cost steps the user can perform to take advantage 
of that discipline and the benefits of doing so. We 
hypothesize that, if the user perceives reasonably low 
costs and useful benefits, the disciplined approaches 
suggested by the system will often seem more 
attractive than ad-hoc approaches, and users will 
follow them. Our previous work along these lines 
empirically supports this hypothesis. 

Distributed cognition “extends the reach of what is 
considered cognitive beyond the individual to 
encompass interactions between people and with re- 
sources and materials in the environment” [8]. In 
system-user collaborations to support the direction we 
have just described, by definition, the user does some 
of the reasoning and the system does some of the 
reasoning. The system’s contribution to this reasoning 
may be simple, such as helping users remember 
judgments they have made so far, or complex, such as 
performing static or dynamic analysis of source code 
to deduce possible errors. The rest of this paper 
provides examples as to how such distributed 
cognition approaches can be incorporated into end-
user software development environments to encourage 
greater discipline by end-user programmers. 

                                                           
1 unless there are professional software developers involved 

to provide the discipline, as in the work of Fischer and 
Giaccardi [6] and Costabile et al. [5].  
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2. Examples from our Previous Work in 
End-User Software Engineering  

Our What You See Is What You Test (WYSIWYT) 
methodology for testing spreadsheets [3, 16] 
demonstrates how distributed cognition can augment 
end users’ abilities to use more disciplined approaches. 
In the case of WYSIWYT, the increased discipline is 
in testing and debugging. 

With WYSIWYT, as a user incrementally develops 
a spreadsheet, he or she can also test that spreadsheet 
incrementally yet systematically. The basic idea is that, 
at any point in the process of developing the 
spreadsheet, the user can validate any value that he or 
she notices is correct. Behind the scenes, these 
validations are used to measure the quality of testing in 
terms of a test adequacy criterion. These measurements 
are communicated by visual decorations to reflect the 
new “testedness” state of the spreadsheet, to encourage 
users to direct their testing effort to the cells the system 
has systematically identified as needing the most 
attention. 

For example, suppose that a teacher is creating a 
student grades spreadsheet, as in Figure 1. During this 
process, whenever the teacher notices that a value in a 
cell is correct, she can check it off (“validate” it).  The 
result of the teacher’s validation action is that the 
colors of the validated cell’s borders become more 
blue, indicating that data dependencies between the 
validated cell and cells it references have been 
exercised in producing the validated values.  

A red border means untested, a blue border means 
tested, and shades of purple (i.e., between red and 
blue) mean partially tested. From these border colors, 
the teacher is kept informed of which areas of the 
spreadsheet are tested and to what extent. Thus, in the 
figure, row 4’s Letter cell’s border is partially blue 
(purple), because some of the dependencies ending at 
that cell have now been tested. Testing results also 
flow upstream against dataflow to other cells whose 
formulas have been used in producing a validated 
value. In our example, all dependencies ending in row 

4’s Course cell have now been exercised, so that cell’s 
border is now blue. 

The border colors support distributed cognition by 
remembering (and figuring out and updating) a “things 
to test” list for the teacher. This distributed cognition 
allows the teacher to test in a more disciplined way 
than she might otherwise do, because it constructs its 
things-to-test statuses using a formal test adequacy 
criterion (du adequacy) that the user is not likely to 
know about.  

The checkboxes further support distributed 
cognition by remembering for the user the specifics of 
testing that was done. Here the checkmark reminds the 
teacher that a cell’s value has been validated under 
current inputs. As with the border colors, the 
distributed cognition goes further than just 
remembering things done directly—it also manages the 
“things tested” set by changing the contents of the 
checkboxes when circumstances change. For example, 
an empty checkbox indicates that the cell’s value was 
validated, but the value was different than the one 
currently on display. Finally, the system helps the 
teacher manage her testing strategy by showing a 
question mark where validating the cell would increase 
testedness. 

Checkmarks and border colors assist cognition 
about things to test and things tested successfully. 
There is also a fault localization functionality for 
things tested unsuccessfully. For example, suppose our 
teacher notices that row 5’s Letter grade is erroneous, 
which she indicates by X’ing it out instead of checking 
it off. Row 5’s Course average is obviously also 
erroneous, so she X’s that one too. As Figure 1 shows, 
both cells now contain pink interiors, but Course is 
darker than Letter because Course contributed to two 
incorrect values (its own and Letter’s) whereas Letter 
contributed to only its own. These colorings are 
another example of distributed cognition. They make 
precise the teacher’s reasoning/recollection about cell 
formulas that could have contributed to the bad value 
and direct her attention to the most implicated of these, 
thereby encouraging her to systematically consider all 
the possible culprits in priority order to find the ones 
that need fixing. 

Recall our hypothesis from Section 1 that it is 
necessary to keep the cost of discipline low. 
WYSIWYT gives us a vehicle for considering the cost 
of discipline: Just why would a user whose interests 
are simply to get their spreadsheet results as efficiently 
as possible choose to spend extra time learning about 
these unusual new checkmarks, let alone think 
carefully about values and whether they should be 
checked off?   

 

 
Figure 1: WYSIWYT supports systematic 
testing for end users, to help the user test and 
debug spreadsheet formulas [16]. 
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To succeed at enticing the user to use discipline, we 
require a strategy that can motivate these users to make 
use of software engineering devices, can provide the 
just-in-time support they need to effectively follow up 
on this interest, and will not require the user to spend 
undue time on these devices. 

We call our strategy for enticing the user down this 
path Surprise-Explain-Reward [21].  The strategy 
attempts to first arouse users’ curiosity about the 
software engineering devices through surprise, and to 
then encourage them, through explanations and 
rewards, to follow through with appropriate actions.  
This strategy has its roots in three areas of research: 
research about curiosity [13], Blackwell’s model of 
attention investment [2], and minimalist learning 
theory [4]. 

The red borders and the checkboxes in each cell, 
both of which are unusual for spreadsheets, are 
therefore intended to surprise the user, to arouse 
curiosity.  These surprises are non-intrusive: users are 
not forced to attend to them if they view other matters 
to be more worthy of their time.  However, if they 
become curious about these features, users can ask the 
colors or checkboxes to explain themselves at a very 
low cost, simply by hovering over them with their 
mouse.  Thus, the surprise component delivers the user 
to the explain component. 

The explain component is also very low in cost.  In 
its simplest form, it explains the object in a tool tip.  
For example, if the user hovers over a checkbox that 
has not yet been checked off, the tool tip says: “If this 
value is right, √ it; if it’s wrong, X it.  This testing 
helps you find errors.” Thus, it explains the semantics 
very briefly, gives just enough information for the user 
to succeed at going down this path, and gives a hint at 
the reward. 

The main reward is finding errors, which is 
achieved by checking values off and X’ing them out to 
narrow down the most likely locations of formula 
errors. A secondary reward is a “well tested” (high 
coverage) spreadsheet, which at least shows evidence 
of having fairly thoroughly looked for errors.  To help 
achieve testing coverage, question marks point out 
where more decisions about values will make progress 
(cause more coverage under the hood, cause more 
color changes on the surface), and the progress bar at 
the top shows overall coverage/testedness so far.  Our 
empirical work has shown that these devices are both 
motivating and that they lead to more effectiveness [3, 
17]. 

3. Current Research Directions 

3.1 More disciplined debugging of machine-
learned programs  

The recent increase in machine learning’s presence 
in a variety of desktop applications has led to a new 
kind of program that needs debugging by the end user: 
programs written (learned) by machines. Since these 
learned programs are created by observing the user’s 
data and reside on the user’s machine, the only person 
present to fix them if they go wrong is the user. 

Traditional methods for end users to improve the 
logic of machine-learned programs have been 
restricted to re-labeling the output of these programs.  
For example, imagine a movie recommendation system 
that uses machine-learning techniques to make 
intelligent recommendations based on a user’s 
previously viewed movies. This system allows the user 
to label the suggestions by marking each as something 
they are either interested in or not interested in.  Such 
debugging, however, is ad hoc. The user can neither 
know how many recommendations to label before the 
system will improve nor know how far-reaching an 
observed improvement is, and therefore, cannot plan or 
be strategic: the entire process is based solely on the 
luck of just the right inputs arriving in a timely way.   

We are working on a more disciplined approach to 
debugging machine-learned programs to remove this 
complete reliance on fortuitous inputs arriving. In our 

Why will this message 
be filed to <folder1>? 

Why won’t this message 
be filed to <folder2>? 

  

Figure 2: An interactive visualization for 
showing end users the relative importance 
of different words to a machine-learned 
program’s decision-making.  For example, 
the word “email” is fairly neutral in 
classifying messages to folder1 (pink), but 
is forbidden for folder2 messages (blue). 
Users are able to drag any bar up or down to 
explicitly change the logic of the learned 
program [10]. 
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approach, end users directly fix the logic of a learned 
program that has gone wrong, and the machine keeps 
them apprised of the greater impacts of their fixes.  
Two keys to our approach are (a) an interactive 
explanation of the learned program’s logic and (b) a 
machine-learning algorithm that is capable of 
accepting and integrating user-provided feedback. The 
approach is more disciplined than traditional 
approaches in that it removes much of the element of 
luck in the arrival of suitable inputs, and also employs 
distributed cognition devices to enable users to predict 
the impacts of their logic changes. 

 We have designed and implemented our first 
prototype  [10] aimed at meeting these goals. The 
domain we used for this prototype was automatically 
filing the user’s incoming email messages to the 
correct folder. Our approach was inspired by the 
Whyline [9]. In our variant of why-oriented 
debugging, users debug through viewing and changing 
answers to “why will” and “why won’t” questions. 
Examples of the questions and manipulable answers in 
our prototype are shown in Figure 2. As soon as the 
user manipulates these answers, the system not only 
updates the result of the input they are working with 
(in this case, the particular email message), but also 
apprises them of how other messages in their email 
system would be categorized differently given these 
changes, in essence running a full regression test.  

Using this prototype, we analyzed barriers end users 
faced when attempting to debug using such an 
approach [10]. The most common obstacle for users 
was determining which sections of the learned 
program’s logic they should modify to achieve the 
desired behavior changes on an ongoing basis. The 
complete set of barriers uncovered is being used to 
inform the design of our continuing work in enabling 
end users to debug programs that are learned from that 
particular user’s data.  

3.2 Strategies as agents of discipline for males 
and females  

Given their lack of formal training in software 
engineering, end-user programmers who attempt to 
reason about their programs’ correctness are likely to 
do so in an ad-hoc way rather than using a systematic 
strategy. Strategy refers to a reasoned plan or method 
for achieving a specific goal. It involves intent, but the 
intent may change during the task. Until recently, little 
has been known about the strategies end-user 
programmers employ in reasoning about and 
debugging their programs. We have been working to 
help close this gap, and to devise ways to better 

support end-user programmers’ strategic efforts to 
reason about program correctness.  

The WYSIWYT approach described in Section 2 
promotes debugging strategies based on testing. One 
problem with testing-based strategies is that they do 
not seem to be equally attractive to male and female 
end-user programmers. In a recent study, we found 
males both preferred testing-based strategies more, and 
were more effective with them, than females [18]. This 
was also the case for dataflow strategies (Figure 3). On 
the other hand, the same study showed that code 
(formula) inspection strategies were more effective for 
females than for males. Gender differences in 
approaches to end-user software development have 
also been reported in debugging feature usage [1] and 
in end-user web programming [15]. 

In fact, of the eight debugging strategies we learned 
about in our study of spreadsheet work—Testing, 
Code Inspection, Specification Following, Dataflow, 
To-Do Listing, Color Following, Formula Fixing, and 
Spatial—seven (all but Spatial) had gender differences 
in ties to success at fixing spreadsheet formula errors 
[18]. In a follow-up study on strategies employed by a 
different population at the border between end-user 
programmers and professional developers, namely IT 
professionals debugging system administration scripts, 
the results on what debugging strategies were used 
were nearly the same, with a few additions due to 
differences in resources and paradigm [7]. The 
resulting list of ten end-user debugging strategies is 
shown in Table 1. 

We are now beginning to explore how to explicitly 
support strategies that seem particularly attractive to 
one or the other gender, but are not yet well supported 
in end-user software development environments. For 
example, females’ most effective strategies, namely 
Code Inspection, To-Do Listing, and Specification 
Checking, are not supported in spreadsheet software 
[18]. One example of an approach to supporting code 
inspection would be adding an “inspectedness” state to 
cell formulas, similar to the “testedness” state 
supported by WYSIWYT. This way, distributed 

Figure 3: Correlation between total bugs fixed 
and number of dataflow following instances. 
Left: male (significant), right: female (not 
significant) [18]. 
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cognition in the system environment could help users 
track which formulas have been inspected and judged 
correct or incorrect. (The spreadsheet auditing product 
described in [19] shows one possible approach for 
this.) 

In the study of IT professionals’ debugging, one 
interesting way in which females used Code Inspection 
effectively was by looking up examples of similar 
formulas to fix errors in the spreadsheet, after already 
having found the error [7]. This is a repurposing of 
code inspection for debugging purposes that has little 
support in debugging tools, either for professional 
developers or for end-user programmers. An idea 
along these lines that we are exploring is that part of 
the cognitive effort of searching for and memorizing 
related formulas could be reduced by offloading to the 
software the task of finding related formulas and 
displaying them (external memory).   

Thus, the goal of this work is to encourage the use 
of disciplined, strategy-based problem solving by end-
user programmers through distributed cognition 
approaches that support a variety of strategies. We 

hypothesize that such support will increase the 
discipline used in end-user programmers’ problem-
solving and, as a result, will increase male and female 
end-user developers’ productivity and success at 
debugging their programs. 

3.3 How information foraging theory can 
inform tools to promote discipline 

The theme of this paper is that distributed cognition 
can help promote discipline for end-user programmers, 
but beyond this basic point, it would be helpful to 
developers of tools for end-user programmers to have 
guidance that is more concrete and prescriptive. We 
believe information foraging theory can provide such 
guidance. 

Information foraging theory models a person’s 
search for information as a hunt for prey, guided by 
scent.  The prey is the information they are seeking. 
The scent is the user’s estimate of relevance, which the 
user derives from cues in the environment. The hunt 
for relevant information then proceeds from location to 
location within that environment, each time following 
the most salient cue. Thus the topology of that 
information space and the scent of the cues predict 
how well the user will be able to navigate to the most 
needed information. Information foraging theory was 
proposed as a general model of information seeking 
[14], but has primarily been applied to web browsing. 
We have been researching the applicability of this 
theory to people’s information-seeking behavior in 
software maintenance. In our studies to date on 
professional programmers working in Java, 
information foraging theory predicted people’s 
navigation behavior when debugging as well as the 
aggregate human wisdom of a dozen programmers, 
and it was also effective at picking the right locations 
to focus on when debugging [11, 12]. 

Because cues are externalizations of scent 
(relevance), following cues is a strategic way to 
eliminate large portions of the code that must be 
considered in tracking down a bug. Cues can be found 
in both the GUI and in the software artifacts 
themselves. For example, variable names, component 
names, pictorial icons that seem to represent the 
relevant functionalities, are all cues.  Tool feedback, 
such as the highlighted cells of WYSIWYT’s fault 
localization, are the system’s way of enhancing 
distributed cognition about where to navigate. The user 
can also enhance this distributed cognition through 
what Pirolli and Card term enrichment.  

Pirolli defines enrichment as the extra work an 
information seeker does to enhance the information 
density or topology of the space they are working in. 

Table 1. Strategies in finding/fixing bugs [7]. 

Strategy Definition 

 
Direct Matches 

Testing Trying out different values to 
evaluate the resulting values. 

Code Inspection Examining code to determine its 
correctness. 

Specification 
Checking 

Comparing descriptions of what the 
script should do with the script’s 
code. 

Dataflow Following data dependencies. 
Spatial Following the spatial layout of the 

code. 
 

Generalized Matches 
Feedback 
Following 

Using system-generated feedback to 
guide their efforts. 

To-Do Listing Indicating explicitly the 
suspiciousness of code (or lack of 
suspiciousness). 

 
New Strategies 

Control Flow Following the flow of control (the 
sequence in which instructions are 
executed). 

Help Getting help from people or 
resources.  

Proceed as in Prior 
Experience 

Recognizing a situation (correctly or 
not) as one experienced before, and 
using that prior experience as a 
blueprint of next steps to take. 
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Pirolli [14] studied an analyst flipping through a pile of 
magazines, cutting out articles to examine more closely 
later.  The information density of this smaller pile of 
articles would make later information seeking go more 
quickly. Many software engineering tools and 
practices are about enrichment. Professional 
developers comment code, draw UML diagrams, write 
specifications, document changes, and link these all 
together to create an information topology that allows 
developers to more quickly get to useful information 
about the program. Some enrichment is informal as 
well, such as maintaining “to do” lists and sketching 
diagrams. These little notes and diagrams users create 
in a working space are in essence a new user-defined 
patch whose purpose is to help the user process 
information quickly. In these ways, enrichment adds to 
distributed cognition.   

These constructs of information foraging theory—
scent, cues, topology, and enrichment—thus suggest a 
design strategy for tools aimed at encouraging 
discipline in end-user programmers. First, identify 
what questions the tool is trying to support. Then, 
given these questions, choose the scent (form of 
relevance) that the tool will support in order to answer 
them. Then choose a topology and cues to allow 
following that scent.  

For example, if the question being supported is 
“Why did…”, the relevant scent could be the trail of 
dynamic state, the cues could be “invoked” edges 
between each called function/component as well as 
their names, and the topology could connect these cues 
to the function’s states at the time they were called so 
that the user can step along the call sequence with each 
function’s details (as in the Whyline [9]).  

Topology and choice of cues are interdependent. 
The topology needs to allow a user to navigate to the 
relevant information called out by the cues, and the 
cues (and thus distributed cognition) need to emanate 
scent to attract the user down appropriate paths in the 
topology. Finally, the system should allow the user to 
easily enrich the cues and topology to further enhance 
their working environment’s distributed cognition. 

Tools based on information foraging theory could 
also promote program maintainability. For example, 
tools based on information foraging theory could 
evaluate and suggest improvements to words, labels, 
pictures, and explicit connections in programs and 
their associated artifacts, so that cues in these artifacts 
would emanate stronger and more precise scent.  

In the service of reuse, tools based on information 
foraging theory could serve as distributed cognition 
elements connected to cues, topology, or enrichment, 
to help people get answers to reuse questions [20] such 
as: (1) I know generally what I want; which 

components are relevant? (2) There is a component 
that I’ve used before from this repository, but I forget 
the name and several other details of it; where is it? (3) 
This component is not quite what I need; which other 
components are similar? 

As these examples show, information foraging 
theory provides a basic foundation from which design 
ideas can be derived on how to promote disciplined 
approaches to navigation-oriented needs in end-user 
software development. 

4. Conclusion  

As we have shown, tools based on distributed 
cognition can promote more disciplined behavior by 
end-user programmers. Distributed cognition works 
because it allows the system to contribute part of the 
reasoning and memory, so that users do not have to do 
everything in their own heads in order to follow 
disciplined approaches. Our empirical results over the 
years have provided encouraging evidence that this 
approach can not only encourage software engineering 
discipline, but can do so in a way that tears down some 
barriers that, in current tools, seem to 
disproportionately target female end-user 
programmers. One key to reaping these benefits is 
keeping the costs of using these tools low, and another 
is keeping the benefits to the targeted users high, so 
that users’ perception of the costs/benefits/risks 
involved will make them want to use these devices.  
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