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Abstract—Intelligent assistants sometimes handle tasks 
too important to be trusted implicitly. End users can 
establish trust via systematic assessment, but such 
assessment is costly. This paper investigates whether, 
when, and how bringing a small crowd of end users to 
bear on the assessment of an intelligent assistant is useful 
from a cost/benefit perspective. Our results show that a 
mini-crowd of testers supplied many more benefits than 
the obvious decrease in workload, but these benefits did 
not scale linearly as mini-crowd size increased—there was 
a point of diminishing returns where the cost-benefit ratio 
became less attractive. 

Keywords: end-user programming; testing; 
crowdsourcing; machine learning 

I. INTRODUCTION  
Intelligent assistants customize their work around 

an end user’s needs—they learn how to recognize 
everything from junk e-mail to photos of friends. These 
assistants are taking on increasingly critical roles, such 
as assisting in qualitative research [11]. Work like this 
may be too important to blindly trust to an assistant, 
particularly since even well trained assistants are not 
100% reliable. 

This paper focuses on assistants that serve small 
groups of people—a smart home security system may 
serve a family in their home or the tenants of an 
apartment building, a classifier for a department’s 
electronic bulletin board serves those employees, and a 
research “coding” assistant helps the group of 
researchers working on a project. 

We refer to these groups as “mini-crowds” rather 
than “teams” because assessing the assistant is rarely 
(if ever) an individual user’s primary task. Since 
assessment itself is not the user’s goal, we expect that 
when users do test the assistant’s reliability, they test 
only enough to meet their own objectives. Group 
members may not know each other (such as the tenants 
of an apartment complex), and they may work 
asynchronously, only assessing the assistant when 
necessary. These groups share more traits with the 
anonymous crowds associated with crowdsourcing than 

the teams and workgroups studied in computer-
supported cooperative work (CSCW) research, yet are 
much smaller than what we traditionally think of as a 
“crowd”.  

To enable individual end users to assess intelligent 
assistants, we recently introduced WYSIWYT/ML [12] 
to support systematic testing of an assistant’s overall 
accuracy and to help testers understand the kinds of 
mistakes their assistant may make. Assessing an 
intelligent assistant is different from in-house testing, 
beta testing, and user product reviews. In-house testing 
is done before deployment, while beta testing and 
product reviews are done on a fixed version of 
software. Intelligent assistants, however, continually 
change as they learn new behavior from their users. 
WYSIWYT/ML allows end users to assess this 
evolving behavior. 

Using WYSIWYT/ML, end users were able to test 
more than half of an assistant’s work on about 200 
items in only 10 minutes. This efficiency is 
encouraging, but most users failed to find all of the 
assistant’s errors. Could testing with a mini-crowd 
produce more systematic and cost effective results? 

The benefits of this idea seem obvious at first, but 
people’s time is not free. Thus, it is important to weigh 
the benefits of mini-crowdsourcing a testing effort 
against the costs of involving an increasing number of 
people in the task. 

This paper presents an empirical study considering 
mini-crowdsourcing from a cost-benefit perspective. 
We compare the attitudes and testing outcomes of end 
users working alone against those working with three 
mini-crowds to answer three research questions: 

RQ1: Finding errors: Can mini-crowds help end 
users find more of their assistant’s errors than they 
would find working alone? What costs are associated 
with distributing this error finding among a crowd? 

RQ2: Behavior changes: How do users’ behaviors 
and attitudes change in the presence of a mini-crowd? 
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Do they find the crowd reliable? 

RQ3: Greatest benefits at lowest costs: What is the 
interaction between the benefits derived from a mini-
crowd and the costs of employing one? Are there 
situations where the benefits are eclipsed by the costs? 

II. RELATED WORK  
Crowdsourced software testing by end users has not 

been investigated empirically before, but research in 
nearby applications suggests the idea has merit. For 
example, a recent study pointed to potential benefits 
from crowdsourcing software testing by professional 
developers [16]. Formative research has also identified 
benefits of crowdsourcing assessment tasks such as 
document relevance [5] and machine-assisted language 
translation [1]. An investigation of reCAPTCHA, 
which applies collaborative assessment to the 
digitization of print media, found that when as few as 
five end users agreed with one another, their collective 
answer was correct 96% of the time [20]. A study of 
Mechanical Turk’s suitability for usability assessment 
found that crowds of end users have great potential for 
rapidly collecting user measurements at a low cost [8]. 
A similar study of Mechanical Turk’s viability for 
assessing visualization design showed that 
crowdsourcing could contribute new insights for such 
designs [7].  

Like the above scenarios, testing an intelligent 
assistant involves a series of user assessments (one for 
each of the assistant’s predictions). Intelligent 
assistants, however, may change their predictions as 
they learn from a user’s behavior, and the number of 
potential users is likely to be much smaller (assistants 
may be shared among a family, building, or 
workgroup) than in traditional crowdsourcing. 

Closely related to software testing are the concepts 
of software debugging and software comprehension: a 
programmer must test software to identify failures, 
understand the software’s logic (e.g., its source code) 
in order to find and fix the faults responsible, and then 
test the software again to verify that the failures have 
been resolved. There is recent work supporting end-
user debugging and comprehension of intelligent 
assistants that allows users to interactively correct their 
assistants. Examples include why… and why not… 
descriptions of the assistant’s logic [10, 14] and visual 
depictions of the assistant’s correct predictions versus 
its failures [19]. As a basis for creating explanations, 
researchers have also investigated the types of 
information users want before assessing the 
trustworthiness of an intelligent agent [4, 11]. Recent 
work by Lim and Dey has resulted in a toolkit for 
applications to generate explanations for popular 
machine learning systems [15], and a few systems add 
debugging capabilities to explanations [10, 11]. 
Supporting testing of intelligent assistants—with or 
without crowdsourcing—is a necessary component for 
supporting explanation and debugging approaches like 

these. 

The crowdsourced testing platform used in this 
paper’s experiment extends WYSIWYT/ML, a non-
crowdsourced approach to systematic software testing 
for end users of intelligent assistants [12]. Systematic 
testing for end users (without crowdsourcing) was 
pioneered by the WYSIWYT (What You See Is What 
You Test) approach for spreadsheet users [18]. 
WYSIWYT/ML applies many WYSIWYT design 
principles to the problem of assessing intelligent 
assistants, leveraging statistical properties of the 
assistant’s behavior to reveal likely software failures. 
WYSIWYT/ML also adapts traditional software testing 
concepts, such as test case selection/prioritization and 
coverage metrics [2], to the domain of intelligent 
assistants. This paper evaluates the benefits and costs 
of adding mini-crowds to this end-user testing context. 

III. EXPERIMENT DESIGN  
To examine the effects of mini-crowds on end-user 

testing, we designed an experiment that let end users 
test an intelligent assistant with support from three 
different crowd sizes. Participants worked with an 
assistant that automatically classified textual messages 
and were asked to find all of the assistant’s mistakes 
and to estimate the assistant’s overall accuracy. 

A. Participants and Procedures  
We randomly selected 48 participants from a pool 

of responses to a campus-wide recruitment notice. 
These participants were all university students (21 male 
and 27 female) with little or no programming 
experience, and none were computer science majors. 

To investigate the effects of different sizes of mini-
crowds, we established four treatments: Treatment 0 
had no crowd (the participant worked alone); 
Treatment 1 had one other user’s tests present; 
Treatment 6 had six other users’ tests present; and 
Treatment 11 involved eleven other users’ tests. 

We used a within-subject design where each 
participant worked with every treatment and message 
set. The message sets (holding 194 to 199 messages 
each) were chosen from the well-studied “20 
Newsgroups” corpus of public newsgroup postings [9]. 
We pre-trained the assistant such that it was able to 
predict each message set with 85%-88% accuracy, as 
defined by the “gold standard” (the topic assigned by 
the message’s original author, e.g. the topic “Cars” for 
messages posted to the rec.autos newsgroup). The 
pairing and the ordering of the treatments and message 
sets was balanced via a Graeco-Latin square (a 
composition of two orthogonal Latin squares where 
every row and column contains each element exactly 
once). 

We began by verbally introducing participants to 
the concept of testing an intelligent assistant’s 
predictions. A researcher then led participants through 
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a 20-minute hands-on tutorial to acquaint them with the 
features of the software. The tutorial covered basic 
usage instructions only; it did not detail software 
testing strategies or approaches. 

During the experiment, participants viewed 
messages the assistant had classified into one of four 
topics (Computers, Religion, Cars, and Motorcycles). 
Participants had 10 minutes with each treatment to test 
as many of these topic predictions as they could, 
deciding which were correct and which were not. (The 
10-minute limit allowed us to see how well time-
pressured users could assess their assistants.) After 
each treatment, participants answered the NASA-TLX 
questionnaire [6] to assess their attitudes. The 
experiment ended with a final questionnaire asking 
participants about their behaviors and responses to the 
crowds’ judgments. 

B. The Mini-Crowd  
Our study used an asynchronous crowd, 

representing a group of end users working at different 
times. The crowd’s tests were visible to participants for 
the full duration of each treatment and remained static 
during the experiment. 

To obtain the mini-crowd’s judgments, we started 
with the work of all 12 participants (university students 
without programming backgrounds, each of whom was 
compensated for his or her time) from a previous 
“work-alone” study [12] involving the same testing 
tool features, message sets, and time limits as the 
current study. We discarded one outlier because his 

performance was so much higher than everyone else’s 
(almost 3 times as high) that including his work would 
have left our new participants with little to do. The 11 
remaining participants constituted the mini-crowd for 
Treatment 11. We then selected the median performer 
as the “partner” for Treatment 1; and used every 
second participant (when ordered by performance) for 
the mini-crowd of 6 (Treatment 6). This method 
assured that both good and bad testers were equally 
represented in all treatments. 

C. Software Environment  
E-mail interfaces are well understood by end users 

and already involve intelligent assistants (e.g., SPAM 
filters), so our prototype was designed to mimic an e-
mail reader. The environment had five components: (1) 
the “assistant” itself, a machine learning classifier 
powered by LibSVM [3] for predicting message topics; 
(2) a mini-crowd (the size of which varied by 
treatment) that had previously tested the assistant; (3) 
an interface enabling participants to test each topic 
prediction; (4) reasoning devices to notify the user 
whether WYSIWYT/ML, the participant, or the crowd 
had tested each message; and (5) devices to explain 
how much of the assistant’s logic had been assessed. 

These five components are shown in Figure 1. The 
top panel included each message’s subject, date, and 
predicted topic (component 1). The mini-crowd’s tests 
appeared as in Figure 1’s component 2. A participant 
could judge the assistant’s predictions as right, maybe 
right, maybe wrong, or wrong using the widget in 
Figure 2, and their judgment would appear in the 

 
Figure 1.  The software prototype participants worked with. (Component 1) The classifier’s predicted topic. (Component 2) The crowd’s decision 

about this prediciton (size of mark shows how many of the crowd members voted this way). (Component 3) The user marked this prediction as 
correct, using the affordance in Figure 2. (Component 4) WYSIWYT/ML infers user tests to similar messages. (Component 5) A test coverage bar 
informs users how many of the assistant’s predictions have been judged (by the user, the crowd, or WYSIWYT/ML), as correct (!) or incorrect (X). 
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Tested? column (Figure 1, component 3). Instead of 
marking wrong, a participant could fix the topic using 
the drop-down topic list (Figure 1, component 1)—this 
acted as a shortcut for wrong, followed by the topic 
change, followed by right. After each participant test, 
WYSIWYT/ML attempted to infer more tests of 
similar messages (Figure 1, component 4) [12]. 

If the participant tested a message that had already 
been tested by the mini-crowd, the system picked the 
participant’s test to display. Otherwise, the system 
showed the mini-crowd’s tests (if there were any), or 
WYSIWYT/ML’s inferred test otherwise. If members 
of the crowd disagreed, the displayed check- and X-
marks were scaled such that the more common 
response was larger.  

WYSIWYT/ML’s responsibilities were to prioritize 
which predictions participants should test, infer 
additional tests, measure test coverage (how much of 
the assistant’s logic had been tested), and track this 
coverage over time [12]. We summarize its reasoning 
here. 

To prioritize which predictions participants should 
test, WYSIWYT/ML used the assistant’s confidence in 
each prediction, and communicated this priority via a 
green square’s brightness (Test Priority column in 
Figure 1). A pie graph shows how this priority was 
computed—the size of each slice represents the 
assistant’s estimated probability that the message 
belonged in the topic associated with that color.  

To show test coverage (how many predictions had 
been tested), WYSIWYT/ML maintained the progress 
bar shown in Figure 1, component 5. This bar was 
updated after each interaction, allowing participants to 
see how much of their assistant had been tested. The 
History column (Figure 1, right) showed participants 
the previous two testing priorities and judgments for 
each prediction, allowing them to spot changes (if any) 
in response to their tests. To aid in their problem-
solving, participants could sort messages by any 
column (Subject, Date, …). For consistency with other 
e-mail systems, the initial sort order was by Date. 

Participants were instructed to use these tools as 
desired to find as many of the assistant’s errors as they 
could. 

IV. RESULTS  
To explore mini-crowdsourced testing, we 

investigated how participants (and the mini-crowds 
helping them) found the assistant’s errors, the ways in 

which participants relied on the crowd, and how these 
results changed with the size of the crowd. 

A. In Crowds we Trust? 
1) Errors Found  

 Did a mini-crowd find more errors than a 
participant working alone (RQ1)? Figure 3 (light bars) 
illustrates what one would suspect: that as mini-crowd 
size grew, the number of detected errors also increased 
(repeated measures ANOVA, F(3,136)=46.5 p<.001). 
Table 1 reveals that the mini-crowd was largely 
responsible for this increase. The crowd played an 
important role in finding the assistant’s errors, leaving 
only a handful undetected at crowd size 11 (Table 1).  

The dark bars in Figure 3, however, reveal a more 
nuanced story. The error-finding benefit of additional 
testers swiftly shrank as the mini-crowd’s size grew. 
Many crowd members repeatedly found the same 
errors, possibly as a result of working asynchronously. 
While larger crowd sizes found more errors overall, 
they did so increasingly inefficiently. 

Participants clearly benefited from the mini-
crowd’s help in identifying the assistant’s errors, but 
RQ2 asks whether participants found the crowd 
reliable—did they trust the crowd to correctly find 
errors? Questionnaire responses indicate that 
participants were keeping a close eye on the crowd’s 
work. When asked whether they thought the crowd’s 
judgments were correct, four participants said “No”, 
while 10 said “Yes”. A majority (24 participants) 
responded with “Yes” followed by a qualifying phrase 
(e.g., “I think they were for the most part…”). These 
participants appeared to pay attention to the crowd’s 
error-finding successes, as well as its failures. 

2) Where the Errors Aren’t 

One method for finding errors is to eliminate non-
errors (i.e., tests that pass) from the user’s search space. 
This can be accomplished with tests covering some 
strategic fraction of the input space. 

As described in Section 3, our measure of coverage 
included tests the user and crowd explicitly performed, 
as well as messages similar to (and sharing the same 

 
Figure 2.  A prediction could be marked as wrong (X), maybe 

wrong (x), maybe right (!), right (!), or “?” to revert to untested.  

  
Figure 3.  (light) The number 
of errors identified increased 
with mini-crowd size. (dark) 

The benefit/cost ratio decreased 
as crowd size increased (errors 

found over cumulative time 
spent testing). 

Figure 4.  (light) The total 
coverage went up as crowd size 

increased. (dark) The crowd 
heavily contributed to total 

coverage. 
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predicted topic as) those explicitly tested. Thus, a 
single participant test could cover several of the 
assistant’s predictions, allowing users to quickly 
eliminate these “safe” predictions from their search 
space. 

As Figure 4 shows, participants working alone 
achieved a mean coverage of 51%, but as crowd size 
increased, so did total coverage. By crowd size 11, the 
average coverage was 89%, leaving only 22 untested 
predictions. Thus, the mini-crowd’s tests helped to not 
only identify errors, but also isolate the areas of the 
assistant likely to still contain errors. By reducing this 
search space, participants faced a more manageable 
subset of predictions requiring their attention. 

3) Frustration, Engagement, and Reliability  

We have shown that larger mini-crowds helped 
participants find more errors, but what role did the 
crowd have on participant attitudes and behaviors? 

Participants were involved in approximately the 
same amount of testing regardless of crowd size, 
despite the fact that larger mini-crowds identified far 
more errors (Table 1). The NASA-TLX questionnaire 
data suggests an explanation—participants reported 
feeling much less discouraged, stressed, and irritated 
when testing with a crowd of at least six other end 
users (Table 2, row Frustration). These participants 
could not have felt successful because they were 
individually finding more errors (they were not), but 
we hypothesize that their attitudes were buoyed by a 
sense of belonging to a larger group that was 
successfully finding errors. 

The above explanation assumes participants trusted 
the crowd’s testing. There is a critical distinction 
between responsible trust versus blind trust. The 
former assumes some amount of verification to confirm 
that trust is still warranted, while the later represents a 
form of disengagement, with all decision-making ceded 
to a third party. To further explore RQ2, we examined 
how participants formed their judgments about the 
crowd’s reliability. 

Table 3 shows that the amount of time participants 
spent verifying the crowd increased with the mini-
crowd’s size, suggesting that participants did not 
blindly trust the mini-crowd. Such verifications seem 
necessary to fully benefit from the crowd’s work, but 
the link between crowd size and the effort participant’s 

expended while forming judgments about the crowd’s 
reliability reveals a cost: it took more effort to establish 
trust in a larger crowd. Only one participant achieved 
100% coverage, so it is unlikely participants were 
verifying the mini-crowd because they had nothing left 
to do. 

We also observed a link between the size of a 
crowd and its overall reliability as an oracle—the more 
people in the crowd, the more their assessments agreed 
with our gold standard (in the case of disagreements, 
we used the assessment shared by the majority of 
testers). This agreement began with an average 
reliability of 88% for crowd size 1 and rose to 94% for 
crowd size 11 (ANOVA contrast, F(2,136)=24.8, 
p<.001). Input from more people generally resulted in 
more reliable error finding. 

Thus, the benefits of a larger crowd are significant 
(RQ3). While participants spent more time verifying 
crowd tests as mini-crowd size increased, those crowd 
tests became more reliable. Larger crowds found more 
errors correctly, reduced the level of stress and 
frustration experienced by participants, and yet did not 
leave participants feeling disengaged. 

B. The Bugs That Got Away  
Even with a mini-crowd’s support, some errors 

remained unseen, or worse, imitated non-errors. We 
term such incorrect predictions that the crowd 
nonetheless marked as correct false negatives. False 
negatives reflect bugs still lurking in the assistant’s 
reasoning. 

Interestingly, crowd size 6 had the most false 
negatives, as Figure 5 shows. An ANOVA contrast 
revealed that the number of false negatives in crowd 
size 6 is significantly higher than both crowd size 1 and 
crowd size 11 (Table 2, row False Negatives). We 
hypothesize that this mini-crowd revealed two nuances 

TABLE I.  NUMBER OF ERRORS IDENTIFIED BY EACH ACTOR.  

Crowd 
Size Crowd WYSIWYT/

ML Participant Total1 Remaining 

0 n/a 2.9 11.1 12.7 15.79 
1 9.8 3.1 10.3 17.0 10.54 
6 19.6 2.8 10.7 21.8 5.46 

11 22.5 2.9 12.1 24.1 4.10 
1Totals do not add up because some errors were jointly identified by multiple actors 

(e.g., both the crowd and the participant). 

TABLE II.  ANOVA CONTRASTS ILLUSTRATING THE DIFFERENCES IN SEVERAL CROWD METRICS BETWEEN TREAMENTS. 

 Mean value per crowd size (p-value for contrast with shaded cell) 
df F p 

0 1 6 11 

Errors identified n/a 9.8 (p<.001) 19.6 (n/a) 22.5 (p<.001) 2,136 124.2 <.001 
False negatives n/a 3.1 (p<.001) 8.2 (n/a) 6.9 (p=.034) 2,136 36.7 <.001 
Coverage n/a 26% (p<.001) 72% (n/a) 80% (p<.001) 2,136 1345.0 <.001 
Reliability n/a 88% (p<.001) 91% (n/a) 94% (p<.001) 2,136 24.8 <.001 
Frustration (max 21) 7.4 (n/a) 6.0 (p=.143) 5.4 (p=.042) 5.3 (p=.033) 3,182 1.9 =.122 
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of crowdsourced assessment. 

First, crowd size 1 tested fewer predictions than 
crowd size 6, so the latter had more opportunities to 
provide false negatives (e.g., if each member of a 
crowd marks one false negative during their testing, it 
follows that a larger crowd will have more false 
negatives overall). If the crowd and problem sizes 
match up so that each member is working on a unique 
subset of the task (i.e., no redundancy), then we would 
expect to see more false negatives introduced as crowd 
size increases—a dangerous situation that masks bugs 
remaining in the assistant’s logic. Thus, even though 
crowd size 6 accomplished a high level of coverage 
(nearly as high as crowd size 11), their judgments were 
less reliable than the larger crowd’s. 

The second nuance explains why crowd size 11 did 
not introduce more false negatives than crowd size 6; 
as our mini-crowd grew, the problem size remained 
constant. Thus, an erroneous judgment by one crowd 
member had ample chance to be overruled by a 
majority of others in the crowd; their redundant testing 
helped to isolate false negatives. Our crowd size 6 had 
little testing overlap, so majority decisions did not 
effectively safeguard judgment reliability.  

The opposite of a false negative is a false positive, 
i.e., the crowd believes a correct prediction is actually 
an error. False positives waste users’ time by forcing 
them to analyze purportedly incorrect predictions that 
were correct all along. The number of false positives 
was reasonably small, averaging between 3 and 4 for 
each crowd size. This is fortunate—a large number of 
such errors could reduce the testing system’s 
effectiveness to that of ad hoc testing, wherein the end 
user has no systematic method for quickly identifying 
errors. 

The number of false positives did not follow the 
same parabolic trend as false negatives. This may be 

the result of positive test bias [17] (the phenomenon 
where a user tends to choose tests that confirm their 
own hypotheses, rather than refute them). This theory 
suggests that if our participants were unsure of a topic 
prediction, they were more likely to mark the test as a 
correct prediction than an error.  

Besides false negatives and false positives, a third 
influence may have allowed some bugs to slip through 
the cracks: surprise errors. A surprise error occurs 
when an assistant is at least 80% confident about an 
incorrect prediction. These errors are challenging to 
find with systems like WYSIWYT/ML, which attempt 
to guide users toward mistakes using (among other 
methods) the assistant’s confidence in each prediction. 
Crowd size had a positive effect on the number of 
surprise errors found (Figure 6). As with false 
negatives and false positives, our largest mini-crowd 
yielded the greatest benefit to participants. 

C. How Many Eyes? 
1) The Point of Diminishing Returns  

 We have shown that when testing an intelligent 
assistant, a crowd led to increased test coverage and 
error finding without additional participant effort. We 
also revealed situations where a larger crowd was 
associated with increased costs, such as the high 
number of false negatives from crowd size 6, or the 
amount of effort required to establish trust in a larger 
crowd. At some point, the benefit to end users may not 
increase proportionally with crowd size, so it is useful 
to identify factors leading to a point of diminishing 
returns (RQ3).  

Recall Figures 3 and 4: both show that while the 
number of errors found and test coverage grew with 
crowd size, neither increased linearly. There are large 
improvements from crowd size 0 to crowd size 1, and 
again to crowd size 6. When the crowd size was 
increased to 11, however, the increases in both errors 
found and test coverage were markedly smaller. 

Why these diminishing returns? Unlike many 
domains where crowdsourcing has been successfully 
employed (such as language translation or word 
recognition, e.g. [20]), both of our performance metrics 
(errors found and logic covered) have respective upper 
bounds. Thus, adding more crowd members implies 
there must be a point of diminishing returns—
eventually, all of the errors in the assistant’s current 
predictions will be uncovered. In a problem domain 
where the measure of a crowd’s work is bounded, 
adding more workers is unlikely to increase this 
measure linearly. For example, we ran offline 
experiments to assess our initial crowd coverage on 
crowd sizes from one to 11. Our findings showed large 
jumps in coverage at sizes two and six, with much 
smaller increases for other crowd sizes.  

Redundancy is another source of diminishing 
returns. In our study, time was limited to 10 minutes, 

TABLE III.  PERCENT OF PARTICIPANT TESTS THAT VERIFIED 
EXISTING CROWD JUDGEMENTS. 

Crowd 
Size 

Overlap between 
participant and crowd tests 

Disagreements with 
crowd judgment 

1 48.7% 2.3 
6 79.2% 3.9 

11 86.7% 4.4 

  
Figure 5.  (light) False positives 

remained constant across 
treatments. (dark) Larger mini-
crowds introduced more false 
negatives, especially size 6. 

Figure 6.  (light) Smaller mini-
crowds left more surprise errors 
hidden in the assistant. (dark) 
Larger crowds found more of 

these errors. 
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preventing any single participant from individually 
testing each of the assistant’s predictions. With the 
addition of a mini-crowd, however, participant tests 
began to overlap with crowd tests. This overlap became 
more severe as crowd size increased. In fact, the crowd 
itself frequently duplicated its own testing efforts, as is 
clear from the bars representing errors found per time 
spent testing (Figure 3). 

As Section 4.B revealed, a major benefit of having 
more eyes searching for errors was not simply finding 
possible errors, but correctly identifying these 
mistakes. Clearly, the value of redundancy will be 
domain specific—when a family assesses their smart 
home security system, there is little value to having 
multiple confirmations of a security threat, whereas co-
workers evaluating a shared SPAM filter may have 
very different ideas of which messages are undesirable. 
We will discuss methods that may alleviate this 
duplication of work in Section 5. 

2) Leveling the Playing Field  

Prior research in end-user testing has uncovered 
various stratagems employed by end users [12], such as 
focusing on high priority tests to find errors or 
leveraging WYSIWYT/ML’s inferred tests to cover 
most of the assistant’s logic. The use of these 
stratagems led some participants to notably outperform 
their peers, but encouraging the adoption of strategies 
remains an open research area. Perhaps a mini-crowd 
of end users working together could level the playing 
field; each user brings his or her own talents to the 
task, and everyone shares the benefits. 

Participants in our study had the option of sorting 
the assistant’s predictions on WYSIWYT/ML’s Test 
Priority, which we know from earlier work [12] is a 
strategy resulting in successfully finding most of the 
assistant’s errors. The vast majority of participants who 
used this sort method at all used it for most of the 
experiment, with a median of 4 minutes and 55 
seconds. We split our results into two groups based on 
whether the participant used this Priority stratagem for 
more or less than the median time. Figure 7 shows the 
number of errors found by participants who used the 
Priority stratagem (dark bars) and those who did not 
(light bars). The differences in crowd size 0 and crowd 
size 1 are particularly striking. 

The advantage, especially at the smallest crowd 
sizes, of using the Priority stratagem has two 
implications. First, using the WYSIWYT/ML-
supported stratagem of Priority was approximately as 
good as having a helpful mini-crowd the next size 
larger, providing a low-cost way of achieving the same 
benefit as with a mini-crowd. Second, after a certain 
small size (here, 6), a mini-crowd was able to 
compensate for lack of good strategies. Thus, in 
situations where convincing end users to employ 
certain strategies is difficult or unrealistic, mini-
crowdsourced testing may be able to achieve an 
equivalent level of accuracy.  

Our test coverage measure (Figure 8) reflects this 
“leveled playing field” in reverse—participants 
employing the Priority stratagem averaged less 
coverage than others, until increasing crowd sizes 
mitigated the effect. Prior work [12] also found that 
participants employing the Priority stratagem achieved 
lower coverage than other participants, likely because 
high priority tests were, by a number of different 
measures, extremely unlike anything in the assistant’s 
training set. Because similarity to the training set was 
used to determine which similar predictions would be 
“covered” by each participant test, it logically follows 
that focusing on high priority tests would result in 
lower coverage. Figure 8, however, reveals very little 
difference in coverage obtained by both groups of 
participants at larger crowd sizes. We hypothesize that 
a crowd is likely to include testers using different 
strategies, imparting the benefits of each strategy to 
everyone in the crowd and minimizing each strategy’s 
drawbacks. This is particularly evident when the 
strategies are complementary (as in this study). 

V. DISCUSSION  
A common concern regarding group tasks is the 

phenomenon of “social loafing” [13]. In essence, this 
theory predicts people are likely to be more productive 
on their own than in a group, with the size of the group 
predicting the drop in productivity. Critically, we found 
no evidence of social loafing among our participants. 
Our results in Section 4.A.3 reveal that participants 
remained engaged throughout each task, suggesting 
that, while other costs (such as decreased efficiency) 
should be weighed against the benefits of mini-
crowdsourced testing, decreasing productivity is not 
one of them. 

The duplication of effort by an asynchronous crowd 
is another common concern. As discussed in Section 
4.B, this redundancy increased oracle reliability, but at 
some point redundancy seems unlikely to provide a 
benefit worth its cost. For example, [20] found that 
once five people agreed about an assessment, they were 
correct 96% of the time. To help address this issue, it 
may be possible to control redundancy. For example, 
WYSIWYT/ML could prioritize tests based on crowd 
disagreement, so that each crowd member will have 

  
Figure 7.  (light) Participants 

who avoided the Priority 
stratagem needed the mini-

crowd’s help to find as many 
errors as other participants (dark). 

Figure 8.  Participants who used 
the Priority stratagem (dark) 

needed the mini-crowd’s help to 
achieve similar coverage as other 

participants (light). 
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more opportunities to assess areas of the assistant that 
have conflicting tests. Conversely, tests with a high 
level of agreement could have a very low testing 
priority, thereby redirecting user effort toward the areas 
it will be most beneficial. 

Finally, our focus has been on anonymous mini-
crowds, but there are situations where members of a 
mini-crowd may be quite familiar with one another. A 
promising area for future work involves building upon 
computer-supported collaborative work (CSCW) 
research to support small groups of collaborating end 
users assessing a shared assistant, such as with family 
homes or small workgroups. 

VI. CONCLUSION  
This paper provides the first empirical evaluation of 

mini-crowdsourcing the assessment of intelligent 
assistants. As these assistants take on more critical 
tasks, assessing when to rely on them will become 
increasingly important. Our results show that using an 
asynchronous mini-crowd to assess these assistants 
confers benefits to end users, but not without costs. 
This paper has empirically investigated the trade-offs 
to better understand the “price” of these benefits. 

Larger mini-crowds, as expected, found more of an 
assistant’s errors, tested more of its logic, and 
introduced enough redundancy to reduce crowd 
mistakes, as compared with smaller mini-crowds. 
However, results we did not expect were: 

• Bigger was not always better: the mini-crowd of 6 
was worse about introducing false negatives than 
the mini-crowd of 11. 

• Diminishing returns: even in metrics where larger 
mini-crowds outperformed smaller crowds, the 
benefit of increasing the crowd size quickly 
dropped, while the cost scaled linearly. 

• No loafing: contrary to the phenomena of social 
loafing, participants working with large mini-
crowds did not overly rely upon the crowd. 

• Tool-supported strategies versus mini-crowds: 
participants using the WYSIWYT/ML-supported 
“priority” strategy found as many errors as 
participants working with larger mini-crowds. 

Overall, our results are encouragingly positive 
about a future in which shared testing is paired with 
shared debugging, to support small ecosystems of end 
users to quickly and effectively assess intelligent 
assistants that support important aspects of their work 
and lives. 
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