














 

more opportunities to assess areas of the assistant that 
have conflicting tests. Conversely, tests with a high 
level of agreement could have a very low testing 
priority, thereby redirecting user effort toward the areas 
it will be most beneficial. 

Finally, our focus has been on anonymous mini-
crowds, but there are situations where members of a 
mini-crowd may be quite familiar with one another. A 
promising area for future work involves building upon 
computer-supported collaborative work (CSCW) 
research to support small groups of collaborating end 
users assessing a shared assistant, such as with family 
homes or small workgroups. 

VI. CONCLUSION  
This paper provides the first empirical evaluation of 

mini-crowdsourcing the assessment of intelligent 
assistants. As these assistants take on more critical 
tasks, assessing when to rely on them will become 
increasingly important. Our results show that using an 
asynchronous mini-crowd to assess these assistants 
confers benefits to end users, but not without costs. 
This paper has empirically investigated the trade-offs 
to better understand the “price” of these benefits. 

Larger mini-crowds, as expected, found more of an 
assistant’s errors, tested more of its logic, and 
introduced enough redundancy to reduce crowd 
mistakes, as compared with smaller mini-crowds. 
However, results we did not expect were: 

• Bigger was not always better: the mini-crowd of 6 
was worse about introducing false negatives than 
the mini-crowd of 11. 

• Diminishing returns: even in metrics where larger 
mini-crowds outperformed smaller crowds, the 
benefit of increasing the crowd size quickly 
dropped, while the cost scaled linearly. 

• No loafing: contrary to the phenomena of social 
loafing, participants working with large mini-
crowds did not overly rely upon the crowd. 

• Tool-supported strategies versus mini-crowds: 
participants using the WYSIWYT/ML-supported 
“priority” strategy found as many errors as 
participants working with larger mini-crowds. 

Overall, our results are encouragingly positive 
about a future in which shared testing is paired with 
shared debugging, to support small ecosystems of end 
users to quickly and effectively assess intelligent 
assistants that support important aspects of their work 
and lives. 
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