

M.F. Costabile et al. (Eds.): IS-EUD 2011, LNCS 6654, pp. 171–186, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Where Are My Intelligent Assistant’s Mistakes?
A Systematic Testing Approach

Todd Kulesza1, Margaret Burnett1, Simone Stumpf 2,
Weng-Keen Wong1, Shubhomoy Das1, Alex Groce1,
Amber Shinsel1, Forrest Bice1, and Kevin McIntosh1

1 School of EECS, Kelley Engr. Center, Oregon State University, Corvallis, OR 97331
{kuleszto,burnett,wong,dassh,

alex,shinsela,bice,mcintoke}@eecs.oregonstate.edu
2 Centre for HCI Design, City University London, Northampton Square, London EC1V 0HB

Simone.Stumpf.1@city.ac.uk

Abstract. Intelligent assistants are handling increasingly critical tasks, but until
now, end users have had no way to systematically assess where their assistants
make mistakes. For some intelligent assistants, this is a serious problem: if the
assistant is doing work that is important, such as assisting with qualitative re-
search or monitoring an elderly parent’s safety, the user may pay a high cost for
unnoticed mistakes. This paper addresses the problem with WYSIWYT/ML
(What You See Is What You Test for Machine Learning), a human/computer
partnership that enables end users to systematically test intelligent assistants.
Our empirical evaluation shows that WYSIWYT/ML helped end users find as-
sistants’ mistakes significantly more effectively than ad hoc testing. Not only
did it allow users to assess an assistant’s work on an average of 117 predictions
in only 10 minutes, it also scaled to a much larger data set, assessing an assis-
tant’s work on 623 out of 1,448 predictions using only the users’ original 10
minutes’ testing effort.

Keywords: Intelligent assistants, end-user programming, end-user develop-
ment, end-user software engineering, testing, machine learning.

1 Introduction

When using a customized intelligent assistant, how can an end user assess whether
and in what circumstances to rely on its work?

Although this may seem at first glance to be merely a matter of providing
live feedback, assessment cannot be treated so superficially when the assistant is per-
forming a critical task. Yet until now, there has been no way for end users to system-
atically assess whether and how their customized intelligent assistants need to be
mistrusted or fixed. Instead, the mechanisms available for user assessment have been
strictly ad hoc: users have had only their gut reactions to what they serendipitously
happen to notice.

In their perspectives on the future of end-user development, Klann et al. pointed to
the need both for intelligent customizations and quality control in end-user development

172 T. Kulesza et al.

[15]. In addition to Klann et al.’s arguments, there are at least three reasons why end-
user assessment of today’s customized assistants has become of key importance. First,
no machine learning technique can yet prevent an intelligent assistant from making
any mistakes. Since machine learning algorithms try to learn a concept from a finite
sample of training data, issues like overfitting and the algorithm’s inductive bias pre-
vent an assistant from being 100% correct over future data. For instance, in [29], a
good assistant is only 80-90% accurate.

Second, today’s intelligent assistants are taking on increasingly important roles—
roles in which, if the assistant goes awry, the user may bear significant costs and/or
risks. For example, Gmail’s new priority inbox decides which e-mail messages busy
people can and cannot delay reading [10]. Other kinds of emerging assistants
are moving toward helping with research itself, such as qualitatively “coding” (cate-
gorizing) natural language text [18]. Assistants are even approaching intelligent “ag-
ing-in-place” monitoring of safety status to enable geographically distant caregivers
to support their aging parents [26] without being personally nearby. In this paper, we
focus on end users who are willing to spend a modest amount of effort to assess assis-
tants doing these kinds of critical tasks.

Third, if an assistant is making mistakes that are critical, the user may want to fix
(“debug”) the assistant, but effective debugging heavily relies on effective testing—
the user needs to determine where the assistant’s mistakes are, when their debugging
efforts have fixed the mistakes, and when their previous testing and/or debugging may
need to be revisited. Therefore, as we will explain in the next section, this paper maps
the question of end-user assessment of a customized intelligent assistant to an end-
user testing problem.

We thus present a human/computer partnership, inspired by the What You See Is
What You Test (WYSIWYT) end-user testing methodology for spreadsheets [5, 25].
In our approach (WYSIWYT/ML), the system (1) advises the user about which pre-
dictions to test, then (2) contributes more tests “like” the user’s, (3) measures how
much of the assistant’s reasoning has been tested, and (4) continually monitors over
time whether previous testing still “covers” new behaviors the assistant has learned.

This paper makes the following contributions:

• We show how end-user assessment of intelligent assistants can be mapped to test-
ing concepts. This mapping opens the door to potentially applying prior research
on software testing to assistant assessment.

• We present our WYSIWYT/ML approach for helping users find where their assis-
tant’s mistakes are and monitoring when a previously reliable assistant may have
gone astray.

• We present the first empirical evaluation of an end-user testing approach for as-
sessing a user’s evolving intelligent assistant.

Our empirical results showed significant evidence of the superiority of systematic
testing in terms of efficiency and effectiveness—by one measure, improving users’
efficiency by a factor of 10. These results strongly support the viability of this new
method for end users to assess whether and when to rely on their intelligent assistants.

 Where Are My Intelligent Assistant’s Mistakes? 173

2 Intelligent Assistant Assessment as a Testing Problem

In this section, we show how assessing whether and when an intelligent assistant’s
outputs are right or wrong can be mapped to software testing. We adopt our termi-
nology from the general literature of software testing [3], and in particular from the
formulation of previous end-user testing problems [25].

According to the latest IEEE Standard [14], testing is “the process of [running] a
system or component under specified conditions, observing or recording the results,
and making an evaluation of some aspect of the system or component”—i.e., running
the program in a particular way (e.g., with given inputs) and evaluating the outputs.

The assistant is obviously a program, but it is an unusual kind of program in that it
was, in part, automatically generated. Specifically, the intelligent assistants of interest
to us are text classification assistants that output a single label for each textual input—
in this domain, the programming process is as follows. First, the machine learning
expert writes the assistant shell and learning algorithm, and tests or otherwise vali-
dates them to his or her satisfaction. The expert then runs the algorithm with an initial
set of training data (here, labeled text examples) to automatically generate the first
version of the assistant, which is the first version of the program. The assistant is
then deployed to the end user’s desktop.

At this point, the assistant’s primary job, like that of most programs, is to read in-
puts (here, unlabeled text) and produce output (here, a label for that text). But unlike
other programs, the assistant has a second job: to gather new training data from its
user’s actions to learn new and better logic—the equivalent of automatically generat-
ing a new program. Note that the machine learning expert is no longer present to test
this new program—the newest version of the assistant learned behaviors from its
specific end user after it had been deployed to the user’s desktop. Thus, the end user
(acting as an oracle [3]) is the only one present to test the program.

Given such a program, many of the testing concepts defined in Rothermel et al.
[25] can be straightforwardly applied to our domain. A test case is the combination of
an input (unlabeled text) and its output (a label). Given a test case that the program
has executed, a test is an explicit decision by the end user about whether the output is
correct for that test case’s input. If the user decides that the output is not correct, this
is (at least in the end user’s eyes) evidence of a bug in the assistant’s reasoning.

Testing would not be viable if every possible input/output pair must be tested indi-
vidually—the space of all possible inputs is usually intractably large or possibly infi-
nite. One solution has been to use the notion of coverage [3] to measure whether
“enough” testing has been done. Along this line, consider a partitioning scheme that
divides inputs into “similar” groups by some measure of similarity. A test case can
then be said to cover all current (and future) input/output pairs for which the inputs
are in the same group as the test case’s input, and the outputs equal the test case’s
output.

Given these definitions, systematic testing differs in two important ways from the
ad hoc testing that comes by serendipitously observing correct/incorrect behaviors:
systematic testing has a measure (coverage) for ascertaining how “tested” the program
is, and it provides a way to identify which test cases can increase that measure. In the
spreadsheet paradigm, systematic testing by end users has been shown to be signifi-
cantly more effective than ad hoc testing [5].

174 T. Kulesza et al.

Finally, it is worth discussing how testing and debugging, while related, are dis-
tinctly separate activities. Testing, as we have explained, evaluates whether a pro-
gram’s outputs are right or wrong, whereas debugging is the act of actually fixing the
program. Even without precisely mapping debugging of assistants to classic debug-
ging (which is beyond the scope of this paper), it is clear that testing contributes to
two phases that have been identified for debugging [19]: it contributes to the debug-
ging phase of finding the bug by showing an instance of how/where a program is
failing, and also contributes to the debugging phase of validation of whether the pro-
gram has now stopped failing in that way. We envision our testing approach as con-
tributing to both of these aspects of debugging.

3 Related Work

Testing of intelligent assistants is often done pre-deployment by machine learning
specialists via statistical methods [13]. Such methods do not substitute for end users’
assessment of their assistants because pre-deployment evaluation cannot assess suit-
ability of after-deployment customizations to a particular user.

Some statistical debugging, however, can be automatically carried out after
deployment. Research in machine learning has led to active learning, whereby an
assistant can request the user to label the most informative training examples during
the learning process [28]. Although one of our WYSIWYT/ML methods (Confidence)
is sometimes used in active learning, most of our methods differ from active learn-
ing’s. Our approach complements debugging techniques such as active learning, al-
lowing the user (not the intelligent assistant) to assess whether and when the assistant
is reliable.

Statistical outlier finding has been used in end-user programming settings for as-
sessment, such as detecting errors in text editing macros [22], inferring formats from a
set of unlabeled examples [27], and to monitor on-line data feeds in web-based appli-
cations for erroneous inputs [24]. These approaches use statistical analysis and inter-
active techniques to direct end-user programmers’ attention to potentially problematic
values, helping them find places in their programs to fix. Our approach also uses
outlier finding, but does so as just one part of a larger approach that also systemati-
cally measures how much more assessment needs to be done.

Systematic testing for end users was pioneered by the What You See Is What You
Test approach (WYSIWYT) for spreadsheet users [25]. To alleviate the need for users
to conjure values for testing spreadsheet data, “Help Me Test” capabilities were
added; these either dynamically generate suitable test values [7] or back-propagate
constraints on cell values [1]. WYSIWYT inspired our approach in concept, but our
under-the-hood reasoning about test prioritization and coverage are based on statisti-
cal properties of the assistant’s behavior, rather than WYSIWYT’s “white box” use of
source code structure. Also, rather than helping users conjure new values to test, our
approach instead aims to help users focus on just the right fraction of existing data to
find important errors quickly.

To support end users’ interactions with intelligent assistants, recent work has ex-
plored methods for explaining the reasons underlying an assistant’s predictions. Such
explanations have taken forms as diverse as why… and why not… descriptions of the

 Where Are My Intelligent Assistant’s Mistakes? 175

assistant’s logic [17, 20], visual depictions of the assistant’s known correct predic-
tions versus its known failures [29], and electronic “door tags” displaying predictions
of worker interruptibility with the reasons (e.g., “talking detected”) [31]. As a basis
for creating explanations, researchers have also investigated the types of information
users want before assessing the trustworthiness of an intelligent agent [9, 18]. Recent
work by Lim and Dey has resulted in a toolkit for applications to generate explana-
tions for popular machine learning systems [21], and a few systems add debugging
capabilities to explanations [17, 18]. Our approach for supporting systematic assess-
ment of intelligent assistants is intended as a complement to explanation and debug-
ging approaches like these.

4 The WYSIWYT/ML Approach

We have explained that without systematic testing, a user is left with only the ability
to assess ad-hoc the assistant’s predictions that they happen to notice. Ad-hoc testing
does not help the user pick which items to test, nor does it help the user decide how
much more testing should be done. WYSIWYT/ML targets both issues for situations
in which an assistant’s mistakes carry high risks or high costs for the user.

One such high-risk/high-cost situation is qualitative “coding” of verbal transcript
data (a common HCI research task), in which empirical analysts segment written
transcripts and categorize each segment. This is a labor-intensive activity requiring
days to weeks of time—but what if an assistant could do part of this work (e.g., [18])?
For example, suppose ethnographer Adam has an intelligent assistant that learns to
code the way Adam does; the assistant could then finish coding Adam’s transcripts.
But Adam’s research results may be invalid if the assistant’s work is wrong, so he
needs to assess where the assistant makes significant mistakes.

We prototyped WYSIWYT/ML as part of an intelligent “coding” assistant that
classifies text messages, similar to Adam’s hypothetical coding assistant. The assis-
tant in our prototypes makes its predictions using a support vector machine, but the
algorithm is not important—WYSIWYT/ML works with any algorithm (or accompa-
nying feature set) that produces the information needed by the test prioritization
methods described shortly.

4.1 How WYSIWYT/ML and Adam Work Together

Two Use-Cases. Given an intelligent classification assistant, WYSIWYT/ML’s
mission is to help the user assess its accuracy during two use cases.

Use case UC-1: In the assistant’s early days, can Adam rely on it? After his assistant
has been initially trained, Adam can use WYSIWYT/ML to decide whether it classi-
fies messages consistently enough for his purposes. To minimize time spent finding
the assistant’s mistakes, WYSIWYT/ML advises him which messages the assistant
believes it is weakest at classifying.

Use case UC-2: As the assistant continues to customize itself, can Adam still rely
on it? As the assistant continues to learn and/or new messages arrive, WYSIWYT/ML
keeps track of whether the assistant is working on messages very similar to (and

176 T. Kulesza et al.

sharing the same output label as) those previously tested, or whether the assistant is
now making predictions unlike those tested earlier. If the assistant is behaving differ-
ently than before, test coverage will be much lower and Adam might decide to sys-
tematically test some of the assistant’s new work. WYSIWYT/ML helps him target
these new predictions.

To support these use-cases, WYSIWYT/ML performs four functions: (1) it advises
(prioritizes) which predictions to test, (2) it contributes tests, (3) it measures cover-
age, and (4) it monitors for coverage changes.

Fig. 1. The WYSIWYT/ML prototype. This variant uses the Confidence method.

WYSIWYT/ML Prioritizes Tests. WYSIWYT/ML prioritizes the assistant’s topic
predictions that are most likely to be wrong, and communicates these prioritizations
using saturated green squares to draw Adam’s eye (e.g., Figure 1, fourth message).
The prioritizations may not be perfect, but they are only intended to be advisory;
Adam is free to test any messages he wants, not just ones the system suggests.

To select prioritization methods, we first ran offline experiments using a “gold
standard” oracle (rather than real users) to allow for numerous experiment runs. These
experiments compared five candidate prioritization methods against randomization
(where Random represents the statistical likelihood of finding mistakes). We selected
the three best-performing methods, all of which outperformed Random: Confidence,
Similarity, and Relevance.

The Confidence method leverages the assistant’s knowledge of its own weak-
nesses, prioritizing messages based on the assistant’s certainty that the topic it pre-
dicted is correct. (This is also a method used by active learning [28].) The higher the
uncertainty, the more saturated the green square (Figure 1, Confidence column).
Within the square, WYSIWYT/ML “explains” Confidence prioritizations using a pie
chart (Figure 2, left). Each pie slice represents the probability that the message

 Where Are My Intelligent Assistant’s Mistakes? 177

belongs to that slice’s topic: a pie with evenly sized slices means the assistant thinks
each topic is equally probable (thus, testing it is a high priority).

The Similarity method selects “oddball” messages—those least similar to the data
the assistant has learned from. The rationale is that if the assistant has never before
seen anything like this message, it is less likely to know how to predict its topic. We
measure this via cosine similarity [2], which is frequently used in information re-
trieval systems; here, it measures co-occurrences of the same words in different mes-
sages. A “fishbowl” explains this method’s priority, with the amount of “water” in the
fishbowl representing how unique the message is compared to messages on which the
assistant trained (Figure 2, middle). A full fishbowl means the message is very unique
(compared to the assistant’s training set), and thus high priority.

The Relevance method is based on the premise that messages without useful words
may not contain enough information for the assistant to accurately predict a topic. In
machine learning parlance, useful words have high information gain (i.e., the words
that contribute the most to the assistant’s ability to predict the topic). We used the top
20 words from the messages the assistant learned from, then prioritized messages by
the lack of these relevant words. Our prototype uses the number of relevant words (0
to 20) to explain the reason for the message’s priority (Figure 2, right), with the low-
est numbers receiving the highest priorities.

In our offline tests (without users), the Confidence method was the most effective:
its high-priority tests were very successful at identifying flaws in an assistant’s pre-
dictions, even when the assistant was 80% accurate. The Similarity and Relevance
methods did not highlight as many bugs, but they outperformed Confidence in reveal-
ing hard-to-find bugs: items the assistant thought it was right about (predicted confi-
dently), but which were wrong. We thus implemented all three, so as to empirically
determine which is the most effective with real users.

Fig. 2. The Confidence (left), Simi-
larity (middle), and Relevance (right)
visualizations.

Fig. 3. A user can mark a predicted topic wrong,
maybe wrong, maybe right, or right (or “?” to
revert to untested). Prior research found these four
choices to be very useful in spreadsheet testing
[12].

Use-Case UC-1: Adam Tests His Assistant. When Adam wants to assess his assis-
tant, he can pick a message and judge (i.e., test) the assistant’s prediction. He can pick
any message: one of WYSIWYT/ML’s suggestions, or some different message if he
prefers. Adam then communicates his judgment by clicking a check if it is correct or
an X if it is incorrect, as in Figure 3. If a topic prediction is wrong, Adam has the
option of selecting the correct topic—our prototype treats this as a shortcut for mark-
ing the existing topic as “wrong”, making the topic change, and then marking the new
topic as “right”.

178 T. Kulesza et al.

WYSIWYT/ML then contributes to Adam’s testing effort: when Adam tests a
message, WYSWYT/ML automatically infers the same judgment upon similar mes-
sages. These automated judgments constitute inferred tests.

To contribute these inferred tests, our approach computes the cosine similarity of
the message Adam just tested with each untested message sharing the same predicted
topic. WYSWYT/ML then marks very similar messages (i.e., scoring above a cosine
similarity threshold of 0.05) as approved or disapproved by the assistant. The auto-
matically inferred assessments are shown with gray check marks and X marks in the
Correctness column (Figure 4, top), allowing Adam to differentiate his own explicit
judgments from those automatically inferred by WYSIWYT/ML. Of course, Adam is
free to review (and if necessary, fix) any inferred assessments—in fact, most of our
study’s participants started out doing exactly this.

WYSIWYT/ML’s third functionality is measuring test coverage: how many of the
assistant’s predictions have been tested by Adam and the inferred tests together. A
test coverage bar (Figure 4, bottom) keeps Adam informed of this measure, helping
him decide how much more testing may be warranted.

WYSIWYT/ML also allows the assistant to leverage Adam’s positive tests (his
“right” and “maybe right” marks) as training data—an extra benefit for Adam. (Only
Adam’s explicit tests become training data, not WYSIWYT/ML’s inferred tests.) As
previously mentioned, however, collecting a few training instances in this way is not
the point of WYSIWYT/ML. Our goal is to allow Adam to effectively and efficiently
assess how much he can rely on the assistant, not to collect enough training instances
to fix its flaws.

Use-Case UC-2: Adam: “It was reliable before; is it reliable now?” Adam’s
intelligent assistant continually learns from Adam’s behaviors, changing its reasoning
based upon Adam’s feedback. The assistant may also encounter data unlike any it had
seen before. Hence, for use-case UC-2, WYSIWYT/ML’s fourth functionality is to
monitor coverage over time, alerting Adam when a previously tested assistant is
exposing behaviors that he has not yet assessed.

Fig. 4. (Top): The user tested three of the messages (the dark check marks and X marks), so
they no longer show a priority. Then the computer inferred the third message to be correct
(light gray check mark). Because the user’s last test caused the computer to infer new informa-
tion, the History column shows the prior values of what changed. (These values move right
with each new change, until they are pushed off the screen.) (Bottom): A test coverage bar
informs users how many topic predictions have been judged (by the user or the computer) to be
correct (check mark) or incorrect (X mark).

 Where Are My Intelligent Assistant’s Mistakes? 179

Whenever Adam tests one of the assistant’s predictions or new content arrives for
the assistant to classify, the system immediately updates all of its information. This
includes the assistant’s predictions (except for those Adam “locked down” by explic-
itly approving them), all testing priorities, all inferred tests, and the test coverage bar.
Thus, Adam can always see how “tested” the assistant is at any given moment. If he
decides that more testing is warranted, he can quickly tell which predictions
WYSIWYT/ML thinks are the weakest (UC-1) and which predictions are not covered
by his prior tests (UC-2).

4.2 Cognitive Dimensions Analysis

We used Cognitive Dimensions [11], a popular analytical technique, to head off prob-
lems early in the design of our WYSIWYT/ML prototype. This analysis revealed four
key issues for the implementation of WYSIWYT/ML, which we addressed as follows.

What just changed and how (Hard Mental Operations, Hidden Dependencies).
Hard mental operations denote the user having to manually track or compute things in
their head, and a hidden dependency is a link between two items that is not explicit.
These dimensions revealed that a user could only answer the question “what just
changed?” by scrolling extensively and memorizing prior statuses. To solve this, we
added a History column showing the last two statuses of each message.

Too eager to help (Premature Commitment). This dimension denotes requiring
users to make a decision before they have information about the decision’s conse-
quences. Because each user action may cause the assistant to update its predictions
and WYSIWYT/ML to update its priority rankings and inferred tests, end user cannot
easily guess the scope of alterations resulting from each interaction. In an early proto-
type, testing a prediction could cause on-screen messages to disappear from the user’s
view (due to the system automatically re-sorting messages based on new predictions
or test priorities), making it difficult to see these consequences. Thus, we changed the
prototype to only re-sort when the user asks it to (e.g., clicks the column header). This
modification also helps emphasize recent changes, as other affected items in the sort
“key” become visually distinct from their neighbors (e.g., now have a lower test prior-
ity than nearby messages).

Notes and scratches (Secondary Notation). Secondary notations allow users to
annotate, change layout, etc., to communicate informally with themselves or with
other humans in their environment (as versus communicating with the computer). We
decided that secondary notation was unnecessary for end-user testing. As our empiri-
cal results will show, revisiting this decision may be warranted—some participants
appeared to repurpose certain user interface affordances to indicate assistant predic-
tions they intended to revisit later.

Communication overload (Role Expressiveness). This dimension denotes a user’s
ability to see how a component relates to the whole. This was initially a problem for
our priority widget because it had too many roles: a single widget communicated the
priority of assessing the message, explained why it had that priority, and how the
message had been assessed—all in one small icon. Thus, we changed the prototype so

180 T. Kulesza et al.

that no widget had more than one role. We added the Correctness column to show the
user’s (or computer’s) assessment (Figure 1), the green square to represent priority,
and the widgets inside to explain the reasoning behind the priority (Figure 2).

5 Empirical Study

We conducted a user study to investigate use-case UC-1, the user’s initial assessment
of an assistant doing important work. We attempted to answer three research ques-
tions to reveal how well ordinary end users could assess their assistants in this use-
case, even if they invested only 10 minutes of effort:

RQ1 (Efficacy): Will end users, testing systematically with WYSIWYT/ML, find
more bugs than via ad hoc testing?

RQ2 (Satisfaction): What are the users’ attitudes toward systematic testing as
compared to ad-hoc testing?

RQ3 (Efficiency): Will WYSIWYT/ML’s coverage contributions to the partner-
ship help with end users’ efficiency?

We used three systematic testing treatments, one for each prioritization method
(Confidence, Similarity, and Relevance). We also included a fourth treatment (Con-
trol) to represent ad hoc testing. Participants in all treatments could test (via check
marks, X marks, and label changes) and sort messages by any column in the proto-
type. See Figure 1 for a screenshot of the Confidence prototype; Similarity and Rele-
vance looked similar, save for their respective prioritization methods and visualiza-
tions (Figure 2). Control supported the same testing and sorting actions, but lacked
prioritization visualizations or inferred tests, and thus did not need priority/inferred
test history columns.

The experiment design was within-subject (i.e. all participants experienced all
treatments). We randomly selected 48 participants (23 males and 25 females) from
respondents to a university-wide request. None of our participants were Computer
Science majors, nor had any taken Computer Science classes beyond the introductory
course. Participants worked with messages from four newsgroups of the widely used
20 Newsgroups dataset [16]: cars, motorcycles, computers, and religion (the original
rec.autos, rec.motorcycles, comp.os.ms-windows.misc, and soc.religion.christian
newsgroups, respectively). This data set provides real-world text for classification, the
performance of machine learning algorithms on it is well understood, and, most im-
portant, the “gold standard” topic choice (the newsgroup to which the message’s au-
thor posted it) defines exactly which messages are “bugs” (misclassified by the assis-
tant), in turn defining how many of those bugs participants found and when
WYSIWYT/ML’s inferred approvals went astray.

We randomly selected 120 messages (30 per topic) to train the intelligent assistant
using a support vector machine [6]. We randomly selected a further 1,000 messages
over a variety of dates (250 per topic) and divided them into five data sets: one tuto-
rial set (to familiarize our participants) and four test sets (to use in the main tasks).
Our intelligent assistant was 85% accurate when initially classifying each of these
sets. We used a Latin Square to counterbalance treatment orderings and randomized
how each participant’s test data sets were assigned to the treatments.

 Where Are My Intelligent Assistant’s Mistakes? 181

Participants answered a background questionnaire, then took a tutorial to learn one
prototype’s user interface and to experience the kinds of messages and topics they
would be seeing during the study. Using the tutorial set, participants practiced testing
and finding the assistant’s mistakes in that prototype. For the first main task, partici-
pants used the prototype to test and look for mistakes in a 200-message test set. After
each treatment, participants filled out a Likert-scale questionnaire with their opinions
of their success, the task difficulty, and the prototype. They then took another brief
tutorial explaining the changes in the next prototype, practiced, and performed the
main task in the next assigned data set and treatment. Finally, participants answered a
questionnaire covering their overall opinions of the four prototypes and comprehen-
sion.

Table 1. ANOVA contrast results (against Control) by treatment. The highest values in each
row are shaded.

Mean (p-value for contrast with Control)
Confidence Similarity Relevance Control

df F p

Bugs Found
(max 30)

12.2 (p<.001) 10.3 (p<.001) 10.0 (p<.001) 6.5 (N/A) 3,
186

10.61 <.001

Helpfulness
(max 7)

5.3 (p<.001) 5.0 (p<.001) 4.6 (p<.001) 2.9 (N/A) 3,
186

22.88 <.001

Perceived
Success (max 21)

13.4 (p=.016) 13.3(p=.024) 14.0 (p=.002) 11.4 (N/A) 3,
186

3.82 .011

6 Results

6.1 RQ1 (Efficacy): Finding Bugs

Bugs Found. To investigate how well participants managed to find an assistant’s
mistakes using WYSIWYT/ML, we compared bugs they found using the
WYSIWYT/ML treatments to bugs they found with the Control treatment. An
ANOVA contrast against Control showed a significant difference between treatment
means (Table 1). For example, participants found nearly twice as many bugs using the
frontrunner, Confidence, than using the Control version.

Not only did participants find more bugs with WYSIWYT/ML, the more tests par-
ticipants performed using WYSIWYT/ML, the more bugs they found (linear regres-
sion, F(1,46)=14.34, R2=.24, beta=0.08, p<.001), a relationship for which there was
no evidence in the Control variant (linear regression, F(1,45)=1.56, R2=.03,
beta=0.03, p=.218). Systematic testing using WYSIWYT/ML yielded significantly
better results for finding bugs than ad-hoc testing.

Profile of a Hard Bug. Our formative offline oracle experiments revealed types of
bugs that would be hard for some of our methods to target as high-priority tests. (Re-
call that, offline, Relevance and Similarity were better than Confidence in this re-
spect.) In order to evaluate our methods with real users, we took a close look at Bug
20635, which was one of the hardest bugs for our participants to find (one of the five

182 T. Kulesza et al.

least frequently identified). The message topic should have been Religion but was
instead predicted to be Computers, perhaps in part because Bug 20635’s message was
very short and required domain-specific information to understand (which was also
true of the four other hardest bugs):

Subject: Mission Aviation Fellowship
Hi, Does anyone know anything about this group and what they do? Any
info would be appreciated. Thanks!

As Table 2 shows, nearly all participants who had this bug in their test set found it
with the Relevance treatment, but a much lower fraction found it using the other
treatments. As the table’s Prioritization column shows, Relevance ranked the message
as very high priority because it did not contain any useful words, unlike Confidence
(the assistant was very confident in its prediction), and unlike Similarity (the message
was fairly similar to other messages). Given this complementarity among the different
methods, we hope in the future to evaluate a combination (e.g., a weighted average or
voting scheme) of prioritization methods, thus enabling users to quickly find a wider
variety of bugs than they could using any one method alone.

6.2 RQ2 (Satisfaction): User Attitudes

Participants appeared to recognize the benefits of systematic testing, indicating in-
creased satisfaction over ad hoc testing. When asked “How much did each system
help you find the computer’s mistakes?” on a seven-point Likert scale, an ANOVA
contrast again confirmed that responses differed between treatments (Table 1, row 2),
with WYSIWYT/ML treatments rated more helpful than Control. Table 1’s 3rd row
shows that participant responses to the NASA-TLX questionnaire triangulate this
result. Together, these results are encouraging from the perspective of the Attention
Investment Model—they suggest that end users can be apprised of the benefits (so as
to accurately weigh the costs) of testing an assistant that does work important to them.

Table 2. The number of participants who found Bug 20635 while working with each
WYSIWYT/ML treatment

Treatment Prioritization Found Did not find
Confidence 0.14 9 15
Similarity 0.58 11 14
Relevance 1.00 19 4

6.3 RQ3 (Efficiency): The Partnership’s Test Coverage

Recall that when a participant tested a message, the system partnered with the user by
inferring additional tests to “cover” similar messages (recall Figure 4). Coverage can
be a powerful concept: it enables a user to reduce the number of items they must look
over while still gaining a reasonable understanding of the assistant’s reliability. It also
reveals the weaknesses of an assistant’s reasoning in terms of areas not yet covered by
tests. In other domains, research has generally found that increased coverage increases
bug finding [5, 8, 25]. Thus, in this section, we consider how much coverage the part-
nership achieved and how this related to participants’ efficiency.

 Where Are My Intelligent Assistant’s Mistakes? 183

Table 3. Tests via check marks, X marks, and topic changes during a 10-minute session (out of
200 total messages per session), for the three WYSIWYT/ML treatments

 Mean √s
participants
entered per

session

Mean Xs
participants
entered per

session

Mean √s
inferred

per session

Mean Xs
inferred

per session

Total
√s

Total
Xs

Explicit Regular: 35.0
“Maybe”: 7.1

Regular: 2.4
“Maybe”: 2.7

Regular: 46.4
“Maybe”: 8.5

Regular: 4.7
“Maybe”: 2.2

Implicit 8.2 topic changes as shortcuts for
X+topic+√

N/A1

Total tests 50.3 13.3 54.9 6.9

105.2

20.2

Total messages tested 2 117.2
1Although the computer sometimes did change topics, this was due to leveraging tests as increased training

on message classification. Thus, because these topic changes were not directly due to the coverage (co-
sine-similarity) mechanism, we omit them from this coverage analysis.

2 Total Tests is larger than Messages Tested because topic changes acted as two tests: an X on the original
topic, then a √ on the new topic.

Coverage: How much? Using WYSIYWT/ML, our participants were able to lever-
age their explicit tests by a factor of about 2. Together with the computer-oracle-as-
partner, participants’ mean of 55 test actions using WYSIWYT/ML covered a mean
of 117 (60%) of the messages—thus, participants gained 62 inferred tests “for free”.
Table 3 shows the raw counts. With the help of their computer partners, two partici-
pants even reached 100% test coverage, covering all 200 messages within their 10-
minute time limit.

Further, coverage scaled well. In an offline experiment, we tried our participants’
explicit tests on the entire set of Newsgroup messages from the dates and topics we
had sampled for the experiment—a data set containing 1,448 messages. (These were
tests participants explicitly entered using either WYSIWYT/ML or Control, a mean of
55 test actions per session.) Using participants’ 55 explicit tests (mean), the computer
inferred a mean of 568 tests per participant, for a total coverage of 623 tests (mean)
from only 10 minutes of work—a 10-fold leveraging of the user’s invested effort.

Participant and WYSIWYT/ML Approvals vs. Disapprovals. As Table 3 shows,
participants approved more messages than they disapproved. When participants approved
a message, their topic choice matched the 20-Newsgroup “gold standard” (the original
newsgroup topic) for 94% of their regular checkmarks and 81% of their “maybe” check-
marks (the agreement level across both types of approval was 92%). By the same meas-
ure, WYSIWYT/ML’s approvals were also very accurate, agreeing with the gold
standard an average 92% of the time—exactly the same level as the participants’.

Participants’ regular X marks agreed with the gold standard reasonably often
(77%), but their “maybe” X marks agreed only 43% of the time. Informal pilot inter-
views revealed a possible explanation: re-appropriation of the “maybe” X marks for a
subtly different purpose. When unsure of the right topic, pilot participants said they
marked it as “maybe wrong” to denote that it could be wrong, but with the intention to
revisit it later. This indicates that secondary notation (in addition to testing nota-
tion)—in the form of a “reminder” to revisit instead of a disapproval—could prove
useful in future prototypes.

184 T. Kulesza et al.

Perhaps in part for this reason, WYSIWYT/ML did not correctly infer many
bugs—only 19% of its X marks agreed with the gold standard. (The computer’s regu-
lar X marks and “maybe” X marks did not differ—both were in low agreement with
the gold standard.) The problem cannot be fully explained by participants repurposing
“maybe” X marks—WYSIWYT/ML’s regular inferred X marks were just as faulty.
However, this problem’s impact was limited because inferred X marks only serve to
highlight possible bugs. Thus, the 81% failure rate on WYSIWYT/ML’s average of
seven X’s per session meant that participants only had to look at an extra five mes-
sages/session. Most inferred tests were the very accurate positive tests (average of 55
per session), which were so accurate, participants could safely skip them when look-
ing for bugs.

7 Discussion

Will end users really explicitly and systematically test an intelligent assistant? Al-
though we did not test this question in our lab study, theory suggests that they will
when the perceived benefits of doing so outweigh the costs [4]. Until this question can
be investigated empirically, we target the subset of end users who are willing to ex-
pend at least modest effort to assess assistants on tasks in which mistake types and
frequencies must be understood before the user would be willing to rely on them, such
as with Adam’s intelligent qualitative coding assistant.

Our current similarity-based notion of coverage also warrants further empirical in-
vestigation. It worked well for approvals, but a smaller threshold for disapprovals
may result in fewer false bug identifications. In the future, we plan a systematic
evaluation of this threshold and its impact on different aspects of WYSIWYT/ML.

Finally, we emphasize that finding (not fixing) bugs is WYSIWYT/ML’s primary
contribution toward debugging. Although WYSIWYT/ML leverages user tests as
additional training data, simply adding training data is not an efficient method for
debugging intelligent assistants. To illustrate, our participants’ testing labeled, on
average, 55 messages, which increased average accuracy by 3%. In contrast, partici-
pants in another study that also used a subset of the 20 Newsgroup dataset spent their
10 minutes debugging by specifying words/phrases associated with a label [32]. They
entered only about 32 words/phrases but averaged almost twice as much of an accu-
racy increase (5%) in their 10 minutes. Other researchers have similarly reported that
allowing users to debug by labeling a word/phrase is up five times more efficient than
simply labeling training messages [23]. Thus, rather than attempting to replace the
interactive debugging approaches emerging for intelligent assistants (e.g., [17, 18, 22,
30]), WYSIWYT/ML’s bug-finding complements them. It provides the missing test-
ing piece, suggesting where important bugs have emerged and when those bugs have
been eradicated, so that end users need not debug blindly.

8 Conclusion

With the increase in intelligent assistants helping with critical tasks comes the need to
rethink the nature of how end users can assess whether and when to rely on their as-
sistants’ help. WYSIWYT/ML is the first work to address this need.

 Where Are My Intelligent Assistant’s Mistakes? 185

WYSIWYT/ML is a human/computer partnership that enables end users to assess
intelligent assistants systematically. The human’s role is to approve or disapprove
(i.e., test) portions of the assistant’s work. The computer’s role is to advise the user
about testing priorities, contribute additional tests similar to the user’s (which the user
may verify), measure how much of the assistant’s reasoning has been assessed, and
monitor the need for additional assessment as the assistant evolves over time.

Our empirical evaluation showed that systematically testing with WYSIWYT/ML
resulted in a significant improvement over ad hoc methods in end users’ abilities to
assess their assistants: our participants found almost twice as many bugs with our best
WYSIWYT/ML variant as they did while testing ad hoc. Further, the approach scales:
participants covered 117 messages in the 200-message data set (over twice as many as
they explicitly tested) and 623 messages in the 1448-message data set (over 10 times
as many as they explicitly tested)—all at a cost of only 10 minutes work.

Thus, systematic assessment of intelligent assistants was not only effective at find-
ing bugs—it also helped ordinary end users assess a reasonable fraction of an assis-
tant’s work in a matter of minutes. These findings strongly support the viability of
bringing systematic testing to this domain, empowering end users to judge whether
and when to rely on intelligent assistants that support critical tasks.

Acknowledgements. We thank Jeremy Goodrich, Travis Moore, Shalini Shamasunder,
Nicole Usselman, Chaoqiang Zhang, and our study participants for their help. This work
has been supported in part by NSF 0803487.

References

[1] Abraham, R., Erwig, M.: AutoTest: A tool for automatic test case generation in spread-
sheets. In: Proc. VL/HCC, pp. 43–50. IEEE, Los Alamitos (2006)

[2] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley
Longman Publishing Co., Inc., Boston (1999)

[3] Beizer, B.: Software Testing Techniques. International Thomson Computer Press (1990)
[4] Blackwell, A.: First steps in programming: A rationale for attention investment models.

In: Proc. HCC, pp. 2–10. IEEE, Los Alamitos (2002)
[5] Burnett, M., Cook, C., Rothermel, G.: End-user software engineering. Comm.

ACM 47(9), 53–58 (2004)
[6] Chang, C., Lin, C.: LIBSVM: A library for support vector machines (2001),
 http://www.csie.ntu.edu.tw/~cjlin/libsvm

[7] Fisher, M., Cao, M., Rothermel, G., Brown, D., Cook, C., Burnett, M.: Integrating auto-
mated test generation into the WYSIWYT spreadsheet testing methodology. ACM Trans.
Software Engineering and Methodology 15(2), 150–194 (2006)

[8] Frankl, P., Weiss, S.: An experimental comparison of the effectiveness of branch testing
and data flow testing. IEEE Trans. Software Eng. 19(3), 202–213 (1993)

[9] Glass, A., McGuinness, D., Wolverton, M.: Toward establishing trust in adaptive agents.
In: Proc. IUI, pp. 227–236. ACM, New York (2008)

[10] Gmail Priority Inbox: Get through your email faster,
 http://google.com/mail/help/priority-inbox.html
 (accessed September 16, 2010)

[11] Green, T., Petre, M.: Usability analysis of visual programming environments: A cognitive
dimensions framework. J. Visual Languages and Computing 7(2) (June 1996)

186 T. Kulesza et al.

[12] Grigoreanu, V., Cao, J., Kulesza, T., Bogart, C., Rector, K., Burnett, M., Wiedenbeck, S.:
Can feature design reduce the gender gap in end-user software development environ-
ments? In: Proc. VL/HCC, pp. 149–156. IEEE, Los Alamitos (2008)

[13] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer,
Heidelberg (2003)

[14] IEEE, IEEE Standard Glossary of Software Engineering Terminology (IEEE Std610.12-
1990) (1990)

[15] Klann, M., Paterno, F., Wulf, V.: Future perspectives in end-user development. In: Lie-
berman, H., Paterno, F., Wulf, V. (eds.) End-User Development. Springer, Heidelberg
(2006)

[16] Kniesel, G., Rho, T.: Newsgroup data set (2005),
 http://www.ai.mit.edu/jrennie/20newsgroups

[17] Kulesza, T., Wong, W., Stumpf, S., Perona, S., White, R., Burnett, M., Oberst, I., Ko, A.:
Fixing the program my computer learned: Barriers for end users, challenges for the ma-
chine. In: Proc. IUI, pp. 187–196. ACM, New York (2009)

[18] Kulesza, T., Stumpf, S., Burnett, M., Wong, W., Riche, Y., Moore, T., Oberst, I., Shinsel,
A., McIntosh, K.: Explanatory debugging: Supporting end-user debugging of machine-
learned programs. In: Proc. VL/HCC. IEEE, Los Alamitos (2010)

[19] Lawrance, J., Bogart, C., Burnett, M., Bellamy, R., Rector, K., Fleming, S.: How pro-
grammers debug, revisited: An information foraging theory perspective. IEEE Trans.
Software Engineering (2011)

[20] Lim, B., Dey, A., Avrahami, D.: Why and why not explanations improve the intelligibility
of context-aware intelligent systems. In: Proc. CHI, pp. 2119–2128. ACM, New York (2009)

[21] Lim, B., Dey, A.: Toolkit to support intelligibility in context-aware applications. In: Proc.
Int. Conf. Ubiquitous Computing. ACM, New York (2010)

[22] Miller, R., Myers, B.: Outlier finding: Focusing user attention on possible errors. In: Proc.
UIST, pp. 81–90. ACM, New York (2001)

[23] Raghavan, H., Madani, O., Jones, R.: Active learning with feedback on both features and
instances. JMLR 7, 1655–1686 (2006)

[24] Raz, O., Koopman, P., Shaw, M.: Semantic anomaly detection in online data sources. In:
Proc. ICSE, pp. 302–312. IEEE, Los Alamitos (2002)

[25] Rothermel, G., Burnett, M., Li, L., Dupuis, C., Sheretov, A.: A methodology for testing
spreadsheets. ACM Trans. Software Engineering and Methodology 10(1) (January 2001)

[26] Rowan, J., Mynatt, E.: Digital family portrait field trial: Support for aging in place. In:
Proc. CHI, pp. 521–530. ACM, New York (2005)

[27] Scaffidi, C.: Unsupervised inference of data formats in human-readable notation. In: Proc.
Int. Conf. Enterprise Integration Systems, pp. 236–241 (2007)

[28] Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648,
University of Wisconsin–Madison (2009)

[29] Shen, J., Dietterich, T.: Active EM to reduce noise in activity recognition. In: Proc. IUI,
pp. 132–140. ACM, New York (2007)

[30] Talbot, J., Lee, B., Kapoor, A., Tan, D.: EnsembleMatrix: Interactive visualization to sup-
port machine learning with multiple classifiers. In: Proc. CHI, pp. 1283–1292. ACM,
New York (2009)

[31] Tullio, J., Dey, A., Chalecki, J., Fogarty, J.: How it works: A field study of non-technical us-
ers interacting with an intelligent system. In: Proc. CHI, pp. 31–40. ACM, New York (2007)

[32] Wong, W.-K., Oberst, I., Das, S., Moore, T., Stumpf, S., McIntosh, K., Burnett, M.: End-
user feature labeling: A locally-weighted regression approach. In: Proc IUI. ACM,
New York (2011)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

