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Abstract. Intelligent assistants are handling increasingly critical tasks, but until 
now, end users have had no way to systematically assess where their assistants 
make mistakes. For some intelligent assistants, this is a serious problem: if the 
assistant is doing work that is important, such as assisting with qualitative re-
search or monitoring an elderly parent’s safety, the user may pay a high cost for 
unnoticed mistakes. This paper addresses the problem with WYSIWYT/ML 
(What You See Is What You Test for Machine Learning), a human/computer 
partnership that enables end users to systematically test intelligent assistants. 
Our empirical evaluation shows that WYSIWYT/ML helped end users find as-
sistants’ mistakes significantly more effectively than ad hoc testing. Not only 
did it allow users to assess an assistant’s work on an average of 117 predictions 
in only 10 minutes, it also scaled to a much larger data set, assessing an assis-
tant’s work on 623 out of 1,448 predictions using only the users’ original 10 
minutes’ testing effort. 

Keywords: Intelligent assistants, end-user programming, end-user develop-
ment, end-user software engineering, testing, machine learning. 

1   Introduction 

When using a customized intelligent assistant, how can an end user assess whether 
and in what circumstances to rely on its work?  

Although this may seem at first glance to be merely a matter of providing  
live feedback, assessment cannot be treated so superficially when the assistant is per-
forming a critical task. Yet until now, there has been no way for end users to system-
atically assess whether and how their customized intelligent assistants need to be 
mistrusted or fixed. Instead, the mechanisms available for user assessment have been 
strictly ad hoc: users have had only their gut reactions to what they serendipitously 
happen to notice. 

In their perspectives on the future of end-user development, Klann et al. pointed to 
the need both for intelligent customizations and quality control in end-user development 
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[15]. In addition to Klann et al.’s arguments, there are at least three reasons why end-
user assessment of today’s customized assistants has become of key importance. First, 
no machine learning technique can yet prevent an intelligent assistant from making 
any mistakes. Since machine learning algorithms try to learn a concept from a finite 
sample of training data, issues like overfitting and the algorithm’s inductive bias pre-
vent an assistant from being 100% correct over future data. For instance, in [29], a 
good assistant is only 80-90% accurate. 

Second, today’s intelligent assistants are taking on increasingly important roles—
roles in which, if the assistant goes awry, the user may bear significant costs and/or 
risks. For example, Gmail’s new priority inbox decides which e-mail messages busy 
people can and cannot delay reading [10]. Other kinds of emerging assistants  
are moving toward helping with research itself, such as qualitatively “coding” (cate-
gorizing) natural language text [18]. Assistants are even approaching intelligent “ag-
ing-in-place” monitoring of safety status to enable geographically distant caregivers 
to support their aging parents [26] without being personally nearby. In this paper, we 
focus on end users who are willing to spend a modest amount of effort to assess assis-
tants doing these kinds of critical tasks.  

Third, if an assistant is making mistakes that are critical, the user may want to fix 
(“debug”) the assistant, but effective debugging heavily relies on effective testing—
the user needs to determine where the assistant’s mistakes are, when their debugging 
efforts have fixed the mistakes, and when their previous testing and/or debugging may 
need to be revisited. Therefore, as we will explain in the next section, this paper maps 
the question of end-user assessment of a customized intelligent assistant to an end-
user testing problem.   

We thus present a human/computer partnership, inspired by the What You See Is 
What You Test (WYSIWYT) end-user testing methodology for spreadsheets [5, 25]. 
In our approach (WYSIWYT/ML), the system (1) advises the user about which pre-
dictions to test, then (2) contributes more tests “like” the user’s, (3) measures how 
much of the assistant’s reasoning has been tested, and (4) continually monitors over 
time whether previous testing still “covers” new behaviors the assistant has learned.  

This paper makes the following contributions: 

• We show how end-user assessment of intelligent assistants can be mapped to test-
ing concepts. This mapping opens the door to potentially applying prior research 
on software testing to assistant assessment. 

• We present our WYSIWYT/ML approach for helping users find where their assis-
tant’s mistakes are and monitoring when a previously reliable assistant may have 
gone astray. 

• We present the first empirical evaluation of an end-user testing approach for as-
sessing a user’s evolving intelligent assistant.  

Our empirical results showed significant evidence of the superiority of systematic 
testing in terms of efficiency and effectiveness—by one measure, improving users’ 
efficiency by a factor of 10. These results strongly support the viability of this new 
method for end users to assess whether and when to rely on their intelligent assistants.  
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2   Intelligent Assistant Assessment as a Testing Problem  

In this section, we show how assessing whether and when an intelligent assistant’s 
outputs are right or wrong can be mapped to software testing.  We adopt our termi-
nology from the general literature of software testing [3], and in particular from the 
formulation of previous end-user testing problems [25]. 

According to the latest IEEE Standard [14], testing is “the process of [running] a 
system or component under specified conditions, observing or recording the results, 
and making an evaluation of some aspect of the system or component”—i.e., running 
the program in a particular way (e.g., with given inputs) and evaluating the outputs. 

The assistant is obviously a program, but it is an unusual kind of program in that it 
was, in part, automatically generated. Specifically, the intelligent assistants of interest 
to us are text classification assistants that output a single label for each textual input—
in this domain, the programming process is as follows. First, the machine learning 
expert writes the assistant shell and learning algorithm, and tests or otherwise vali-
dates them to his or her satisfaction. The expert then runs the algorithm with an initial 
set of training data (here, labeled text examples) to automatically generate the first 
version of the assistant, which is the first version of the program.  The assistant is 
then deployed to the end user’s desktop. 

At this point, the assistant’s primary job, like that of most programs, is to read in-
puts (here, unlabeled text) and produce output (here, a label for that text). But unlike 
other programs, the assistant has a second job: to gather new training data from its 
user’s actions to learn new and better logic—the equivalent of automatically generat-
ing a new program. Note that the machine learning expert is no longer present to test 
this new program—the newest version of the assistant learned behaviors from its 
specific end user after it had been deployed to the user’s desktop. Thus, the end user 
(acting as an oracle [3]) is the only one present to test the program. 

Given such a program, many of the testing concepts defined in Rothermel et al. 
[25] can be straightforwardly applied to our domain. A test case is the combination of 
an input (unlabeled text) and its output (a label). Given a test case that the program 
has executed, a test is an explicit decision by the end user about whether the output is 
correct for that test case’s input. If the user decides that the output is not correct, this 
is (at least in the end user’s eyes) evidence of a bug in the assistant’s reasoning.  

Testing would not be viable if every possible input/output pair must be tested indi-
vidually—the space of all possible inputs is usually intractably large or possibly infi-
nite. One solution has been to use the notion of coverage [3] to measure whether 
“enough” testing has been done. Along this line, consider a partitioning scheme that 
divides inputs into “similar” groups by some measure of similarity. A test case can 
then be said to cover all current (and future) input/output pairs for which the inputs 
are in the same group as the test case’s input, and the outputs equal the test case’s 
output. 

Given these definitions, systematic testing differs in two important ways from the 
ad hoc testing that comes by serendipitously observing correct/incorrect behaviors: 
systematic testing has a measure (coverage) for ascertaining how “tested” the program 
is, and it provides a way to identify which test cases can increase that measure. In the 
spreadsheet paradigm, systematic testing by end users has been shown to be signifi-
cantly more effective than ad hoc testing [5].  
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Finally, it is worth discussing how testing and debugging, while related, are dis-
tinctly separate activities. Testing, as we have explained, evaluates whether a pro-
gram’s outputs are right or wrong, whereas debugging is the act of actually fixing the 
program. Even without precisely mapping debugging of assistants to classic debug-
ging (which is beyond the scope of this paper), it is clear that testing contributes to 
two phases that have been identified for debugging [19]: it contributes to the debug-
ging phase of finding the bug by showing an instance of how/where a program is 
failing, and also contributes to the debugging phase of validation of whether the pro-
gram has now stopped failing in that way. We envision our testing approach as con-
tributing to both of these aspects of debugging. 

3   Related Work  

Testing of intelligent assistants is often done pre-deployment by machine learning 
specialists via statistical methods [13]. Such methods do not substitute for end users’ 
assessment of their assistants because pre-deployment evaluation cannot assess suit-
ability of after-deployment customizations to a particular user. 

Some statistical debugging, however, can be automatically carried out after  
deployment. Research in machine learning has led to active learning, whereby an 
assistant can request the user to label the most informative training examples during 
the learning process [28]. Although one of our WYSIWYT/ML methods (Confidence) 
is sometimes used in active learning, most of our methods differ from active learn-
ing’s. Our approach complements debugging techniques such as active learning, al-
lowing the user (not the intelligent assistant) to assess whether and when the assistant 
is reliable. 

Statistical outlier finding has been used in end-user programming settings for as-
sessment, such as detecting errors in text editing macros [22], inferring formats from a 
set of unlabeled examples [27], and to monitor on-line data feeds in web-based appli-
cations for erroneous inputs [24]. These approaches use statistical analysis and inter-
active techniques to direct end-user programmers’ attention to potentially problematic 
values, helping them find places in their programs to fix. Our approach also uses 
outlier finding, but does so as just one part of a larger approach that also systemati-
cally measures how much more assessment needs to be done. 

Systematic testing for end users was pioneered by the What You See Is What You 
Test approach (WYSIWYT) for spreadsheet users [25]. To alleviate the need for users 
to conjure values for testing spreadsheet data, “Help Me Test” capabilities were 
added; these either dynamically generate suitable test values [7] or back-propagate 
constraints on cell values [1]. WYSIWYT inspired our approach in concept, but our 
under-the-hood reasoning about test prioritization and coverage are based on statisti-
cal properties of the assistant’s behavior, rather than WYSIWYT’s “white box” use of 
source code structure. Also, rather than helping users conjure new values to test, our 
approach instead aims to help users focus on just the right fraction of existing data to 
find important errors quickly. 

To support end users’ interactions with intelligent assistants, recent work has ex-
plored methods for explaining the reasons underlying an assistant’s predictions. Such 
explanations have taken forms as diverse as why… and why not… descriptions of the 
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assistant’s logic [17, 20], visual depictions of the assistant’s known correct predic-
tions versus its known failures [29], and electronic “door tags” displaying predictions 
of worker interruptibility with the reasons (e.g., “talking detected”) [31]. As a basis 
for creating explanations, researchers have also investigated the types of information 
users want before assessing the trustworthiness of an intelligent agent [9, 18]. Recent 
work by Lim and Dey has resulted in a toolkit for applications to generate explana-
tions for popular machine learning systems [21], and a few systems add debugging 
capabilities to explanations [17, 18]. Our approach for supporting systematic assess-
ment of intelligent assistants is intended as a complement to explanation and debug-
ging approaches like these. 

4   The WYSIWYT/ML Approach  

We have explained that without systematic testing, a user is left with only the ability 
to assess ad-hoc the assistant’s predictions that they happen to notice. Ad-hoc testing 
does not help the user pick which items to test, nor does it help the user decide how 
much more testing should be done. WYSIWYT/ML targets both issues for situations 
in which an assistant’s mistakes carry high risks or high costs for the user. 

One such high-risk/high-cost situation is qualitative “coding” of verbal transcript 
data (a common HCI research task), in which empirical analysts segment written 
transcripts and categorize each segment. This is a labor-intensive activity requiring 
days to weeks of time—but what if an assistant could do part of this work (e.g., [18])? 
For example, suppose ethnographer Adam has an intelligent assistant that learns to 
code the way Adam does; the assistant could then finish coding Adam’s transcripts. 
But Adam’s research results may be invalid if the assistant’s work is wrong, so he 
needs to assess where the assistant makes significant mistakes. 

We prototyped WYSIWYT/ML as part of an intelligent “coding” assistant that 
classifies text messages, similar to Adam’s hypothetical coding assistant. The assis-
tant in our prototypes makes its predictions using a support vector machine, but the 
algorithm is not important—WYSIWYT/ML works with any algorithm (or accompa-
nying feature set) that produces the information needed by the test prioritization 
methods described shortly. 

4.1   How WYSIWYT/ML and Adam Work Together 

Two Use-Cases. Given an intelligent classification assistant, WYSIWYT/ML’s 
mission is to help the user assess its accuracy during two use cases.  

Use case UC-1: In the assistant’s early days, can Adam rely on it? After his assistant 
has been initially trained, Adam can use WYSIWYT/ML to decide whether it classi-
fies messages consistently enough for his purposes. To minimize time spent finding 
the assistant’s mistakes, WYSIWYT/ML advises him which messages the assistant 
believes it is weakest at classifying. 

Use case UC-2: As the assistant continues to customize itself, can Adam still rely  
on it? As the assistant continues to learn and/or new messages arrive, WYSIWYT/ML 
keeps track of whether the assistant is working on messages very similar to (and  
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sharing the same output label as) those previously tested, or whether the assistant is 
now making predictions unlike those tested earlier. If the assistant is behaving differ-
ently than before, test coverage will be much lower and Adam might decide to sys-
tematically test some of the assistant’s new work. WYSIWYT/ML helps him target 
these new predictions.  

To support these use-cases, WYSIWYT/ML performs four functions: (1) it advises 
(prioritizes) which predictions to test, (2) it contributes tests, (3) it measures cover-
age, and (4) it monitors for coverage changes. 

 

Fig. 1. The WYSIWYT/ML prototype. This variant uses the Confidence method. 

WYSIWYT/ML Prioritizes Tests. WYSIWYT/ML prioritizes the assistant’s topic 
predictions that are most likely to be wrong, and communicates these prioritizations 
using saturated green squares to draw Adam’s eye (e.g., Figure 1, fourth message). 
The prioritizations may not be perfect, but they are only intended to be advisory; 
Adam is free to test any messages he wants, not just ones the system suggests. 

To select prioritization methods, we first ran offline experiments using a “gold 
standard” oracle (rather than real users) to allow for numerous experiment runs. These 
experiments compared five candidate prioritization methods against randomization 
(where Random represents the statistical likelihood of finding mistakes). We selected 
the three best-performing methods, all of which outperformed Random: Confidence, 
Similarity, and Relevance. 

The Confidence method leverages the assistant’s knowledge of its own weak-
nesses, prioritizing messages based on the assistant’s certainty that the topic it pre-
dicted is correct. (This is also a method used by active learning [28].) The higher the 
uncertainty, the more saturated the green square (Figure 1, Confidence column). 
Within the square, WYSIWYT/ML “explains” Confidence prioritizations using a pie 
chart (Figure 2, left). Each pie slice represents the probability that the message  



 Where Are My Intelligent Assistant’s Mistakes? 177 

 

belongs to that slice’s topic: a pie with evenly sized slices means the assistant thinks 
each topic is equally probable (thus, testing it is a high priority). 

The Similarity method selects “oddball” messages—those least similar to the data 
the assistant has learned from. The rationale is that if the assistant has never before 
seen anything like this message, it is less likely to know how to predict its topic. We 
measure this via cosine similarity [2], which is frequently used in information re-
trieval systems; here, it measures co-occurrences of the same words in different mes-
sages. A “fishbowl” explains this method’s priority, with the amount of “water” in the 
fishbowl representing how unique the message is compared to messages on which the 
assistant trained (Figure 2, middle). A full fishbowl means the message is very unique 
(compared to the assistant’s training set), and thus high priority. 

The Relevance method is based on the premise that messages without useful words 
may not contain enough information for the assistant to accurately predict a topic. In 
machine learning parlance, useful words have high information gain (i.e., the words 
that contribute the most to the assistant’s ability to predict the topic). We used the top 
20 words from the messages the assistant learned from, then prioritized messages by 
the lack of these relevant words. Our prototype uses the number of relevant words (0 
to 20) to explain the reason for the message’s priority (Figure 2, right), with the low-
est numbers receiving the highest priorities. 

In our offline tests (without users), the Confidence method was the most effective: 
its high-priority tests were very successful at identifying flaws in an assistant’s pre-
dictions, even when the assistant was 80% accurate. The Similarity and Relevance 
methods did not highlight as many bugs, but they outperformed Confidence in reveal-
ing hard-to-find bugs: items the assistant thought it was right about (predicted confi-
dently), but which were wrong. We thus implemented all three, so as to empirically 
determine which is the most effective with real users. 

 
 

Fig. 2. The  Confidence (left), Simi-
larity (middle), and Relevance (right) 
visualizations. 

Fig. 3. A user can mark a predicted topic wrong, 
maybe wrong, maybe right, or right (or “?” to 
revert to untested). Prior research found these four 
choices to be very useful in spreadsheet testing 
[12]. 

Use-Case UC-1: Adam Tests His Assistant. When Adam wants to assess his assis-
tant, he can pick a message and judge (i.e., test) the assistant’s prediction. He can pick 
any message: one of WYSIWYT/ML’s suggestions, or some different message if he 
prefers. Adam then communicates his judgment by clicking a check if it is correct or 
an X if it is incorrect, as in Figure 3. If a topic prediction is wrong, Adam has the 
option of selecting the correct topic—our prototype treats this as a shortcut for mark-
ing the existing topic as “wrong”, making the topic change, and then marking the new 
topic as “right”. 
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WYSIWYT/ML then contributes to Adam’s testing effort: when Adam tests a 
message, WYSWYT/ML automatically infers the same judgment upon similar mes-
sages. These automated judgments constitute inferred tests. 

To contribute these inferred tests, our approach computes the cosine similarity of 
the message Adam just tested with each untested message sharing the same predicted 
topic. WYSWYT/ML then marks very similar messages (i.e., scoring above a cosine 
similarity threshold of 0.05) as approved or disapproved by the assistant. The auto-
matically inferred assessments are shown with gray check marks and X marks in the 
Correctness column (Figure 4, top), allowing Adam to differentiate his own explicit 
judgments from those automatically inferred by WYSIWYT/ML. Of course, Adam is 
free to review (and if necessary, fix) any inferred assessments—in fact, most of our 
study’s participants started out doing exactly this. 

WYSIWYT/ML’s third functionality is measuring test coverage: how many of the 
assistant’s predictions have been tested by Adam and the inferred tests together. A 
test coverage bar (Figure 4, bottom) keeps Adam informed of this measure, helping 
him decide how much more testing may be warranted. 

WYSIWYT/ML also allows the assistant to leverage Adam’s positive tests (his 
“right” and “maybe right” marks) as training data—an extra benefit for Adam. (Only 
Adam’s explicit tests become training data, not WYSIWYT/ML’s inferred tests.) As 
previously mentioned, however, collecting a few training instances in this way is not 
the point of WYSIWYT/ML. Our goal is to allow Adam to effectively and efficiently 
assess how much he can rely on the assistant, not to collect enough training instances 
to fix its flaws. 

Use-Case UC-2: Adam: “It was reliable before; is it reliable now?” Adam’s 
intelligent assistant continually learns from Adam’s behaviors, changing its reasoning 
based upon Adam’s feedback. The assistant may also encounter data unlike any it had 
seen before. Hence, for use-case UC-2, WYSIWYT/ML’s fourth functionality is to 
monitor coverage over time, alerting Adam when a previously tested assistant is 
exposing behaviors that he has not yet assessed. 

 

 

Fig. 4. (Top): The user tested three of the messages (the dark check marks and X marks), so 
they no longer show a priority. Then the computer inferred the third message to be correct 
(light gray check mark). Because the user’s last test caused the computer to infer new informa-
tion, the History column shows the prior values of what changed. (These values move right 
with each new change, until they are pushed off the screen.)  (Bottom): A test coverage bar 
informs users how many topic predictions have been judged (by the user or the computer) to be 
correct (check mark) or incorrect (X mark). 
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Whenever Adam tests one of the assistant’s predictions or new content arrives for 
the assistant to classify, the system immediately updates all of its information. This 
includes the assistant’s predictions (except for those Adam “locked down” by explic-
itly approving them), all testing priorities, all inferred tests, and the test coverage bar. 
Thus, Adam can always see how “tested” the assistant is at any given moment. If he 
decides that more testing is warranted, he can quickly tell which predictions 
WYSIWYT/ML thinks are the weakest (UC-1) and which predictions are not covered 
by his prior tests (UC-2). 

4.2   Cognitive Dimensions Analysis  

We used Cognitive Dimensions [11], a popular analytical technique, to head off prob-
lems early in the design of our WYSIWYT/ML prototype. This analysis revealed four 
key issues for the implementation of WYSIWYT/ML, which we addressed as follows. 

What just changed and how (Hard Mental Operations, Hidden Dependencies). 
Hard mental operations denote the user having to manually track or compute things in 
their head, and a hidden dependency is a link between two items that is not explicit. 
These dimensions revealed that a user could only answer the question “what just 
changed?” by scrolling extensively and memorizing prior statuses. To solve this, we 
added a History column showing the last two statuses of each message. 

Too eager to help (Premature Commitment). This dimension denotes requiring 
users to make a decision before they have information about the decision’s conse-
quences. Because each user action may cause the assistant to update its predictions 
and WYSIWYT/ML to update its priority rankings and inferred tests, end user cannot 
easily guess the scope of alterations resulting from each interaction. In an early proto-
type, testing a prediction could cause on-screen messages to disappear from the user’s 
view (due to the system automatically re-sorting messages based on new predictions 
or test priorities), making it difficult to see these consequences. Thus, we changed the 
prototype to only re-sort when the user asks it to (e.g., clicks the column header). This 
modification also helps emphasize recent changes, as other affected items in the sort 
“key” become visually distinct from their neighbors (e.g., now have a lower test prior-
ity than nearby messages). 

Notes and scratches (Secondary Notation). Secondary notations allow users to 
annotate, change layout, etc., to communicate informally with themselves or with 
other humans in their environment (as versus communicating with the computer). We 
decided that secondary notation was unnecessary for end-user testing. As our empiri-
cal results will show, revisiting this decision may be warranted—some participants 
appeared to repurpose certain user interface affordances to indicate assistant predic-
tions they intended to revisit later. 

Communication overload (Role Expressiveness). This dimension denotes a user’s 
ability to see how a component relates to the whole. This was initially a problem for 
our priority widget because it had too many roles: a single widget communicated the 
priority of assessing the message, explained why it had that priority, and how the 
message had been assessed—all in one small icon. Thus, we changed the prototype so 
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that no widget had more than one role. We added the Correctness column to show the 
user’s (or computer’s) assessment (Figure 1), the green square to represent priority, 
and the widgets inside to explain the reasoning behind the priority (Figure 2). 

5   Empirical Study 

We conducted a user study to investigate use-case UC-1, the user’s initial assessment 
of an assistant doing important work. We attempted to answer three research ques-
tions to reveal how well ordinary end users could assess their assistants in this use-
case, even if they invested only 10 minutes of effort: 

RQ1 (Efficacy): Will end users, testing systematically with WYSIWYT/ML, find 
more bugs than via ad hoc testing?  

RQ2 (Satisfaction): What are the users’ attitudes toward systematic testing as 
compared to ad-hoc testing? 

RQ3 (Efficiency): Will WYSIWYT/ML’s coverage contributions to the partner-
ship help with end users’ efficiency? 

We used three systematic testing treatments, one for each prioritization method 
(Confidence, Similarity, and Relevance). We also included a fourth treatment (Con-
trol) to represent ad hoc testing. Participants in all treatments could test (via check 
marks, X marks, and label changes) and sort messages by any column in the proto-
type. See Figure 1 for a screenshot of the Confidence prototype; Similarity and Rele-
vance looked similar, save for their respective prioritization methods and visualiza-
tions (Figure 2). Control supported the same testing and sorting actions, but lacked 
prioritization visualizations or inferred tests, and thus did not need priority/inferred 
test history columns. 

The experiment design was within-subject (i.e. all participants experienced all 
treatments). We randomly selected 48 participants (23 males and 25 females) from 
respondents to a university-wide request. None of our participants were Computer 
Science majors, nor had any taken Computer Science classes beyond the introductory 
course. Participants worked with messages from four newsgroups of the widely used 
20 Newsgroups dataset [16]: cars, motorcycles, computers, and religion (the original 
rec.autos, rec.motorcycles, comp.os.ms-windows.misc, and soc.religion.christian 
newsgroups, respectively). This data set provides real-world text for classification, the 
performance of machine learning algorithms on it is well understood, and, most im-
portant, the “gold standard” topic choice (the newsgroup to which the message’s au-
thor posted it) defines exactly which messages are “bugs” (misclassified by the assis-
tant), in turn defining how many of those bugs participants found and when 
WYSIWYT/ML’s inferred approvals went astray. 

We randomly selected 120 messages (30 per topic) to train the intelligent assistant 
using a support vector machine [6]. We randomly selected a further 1,000 messages 
over a variety of dates (250 per topic) and divided them into five data sets: one tuto-
rial set (to familiarize our participants) and four test sets (to use in the main tasks). 
Our intelligent assistant was 85% accurate when initially classifying each of these 
sets. We used a Latin Square to counterbalance treatment orderings and randomized 
how each participant’s test data sets were assigned to the treatments. 



 Where Are My Intelligent Assistant’s Mistakes? 181 

 

Participants answered a background questionnaire, then took a tutorial to learn one 
prototype’s user interface and to experience the kinds of messages and topics they 
would be seeing during the study. Using the tutorial set, participants practiced testing 
and finding the assistant’s mistakes in that prototype. For the first main task, partici-
pants used the prototype to test and look for mistakes in a 200-message test set. After 
each treatment, participants filled out a Likert-scale questionnaire with their opinions 
of their success, the task difficulty, and the prototype. They then took another brief 
tutorial explaining the changes in the next prototype, practiced, and performed the 
main task in the next assigned data set and treatment. Finally, participants answered a 
questionnaire covering their overall opinions of the four prototypes and comprehen-
sion. 

Table 1. ANOVA contrast results (against Control) by treatment. The highest values in each 
row are shaded. 

Mean (p-value for contrast with Control)  
Confidence Similarity Relevance Control 

df F p 

Bugs Found 
(max 30) 

12.2 (p<.001) 10.3 (p<.001) 10.0 (p<.001) 6.5 (N/A) 3,
186

10.61 <.001 

Helpfulness  
(max 7) 

5.3 (p<.001) 5.0 (p<.001) 4.6 (p<.001) 2.9 (N/A) 3,
186

22.88 <.001 

Perceived  
Success (max 21)

13.4 (p=.016) 13.3(p=.024) 14.0 (p=.002) 11.4 (N/A) 3,
186

3.82 .011 

 

6   Results 

6.1   RQ1 (Efficacy): Finding Bugs 

Bugs Found. To investigate how well participants managed to find an assistant’s 
mistakes using WYSIWYT/ML, we compared bugs they found using the 
WYSIWYT/ML treatments to bugs they found with the Control treatment. An 
ANOVA contrast against Control showed a significant difference between treatment 
means (Table 1). For example, participants found nearly twice as many bugs using the 
frontrunner, Confidence, than using the Control version.  

Not only did participants find more bugs with WYSIWYT/ML, the more tests par-
ticipants performed using WYSIWYT/ML, the more bugs they found (linear regres-
sion, F(1,46)=14.34, R2=.24, beta=0.08, p<.001), a relationship for which there was 
no evidence in the Control variant (linear regression, F(1,45)=1.56, R2=.03, 
beta=0.03, p=.218). Systematic testing using WYSIWYT/ML yielded significantly 
better results for finding bugs than ad-hoc testing. 

Profile of a Hard Bug. Our formative offline oracle experiments revealed types of 
bugs that would be hard for some of our methods to target as high-priority tests. (Re-
call that, offline, Relevance and Similarity were better than Confidence in this re-
spect.) In order to evaluate our methods with real users, we took a close look at Bug 
20635, which was one of the hardest bugs for our participants to find (one of the five 
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least frequently identified). The message topic should have been Religion but was 
instead predicted to be Computers, perhaps in part because Bug 20635’s message was 
very short and required domain-specific information to understand (which was also 
true of the four other hardest bugs): 

Subject: Mission Aviation Fellowship 
Hi, Does anyone know anything about this group and what they do? Any 
info would be appreciated. Thanks! 

As Table 2 shows, nearly all participants who had this bug in their test set found it 
with the Relevance treatment, but a much lower fraction found it using the other 
treatments. As the table’s Prioritization column shows, Relevance ranked the message 
as very high priority because it did not contain any useful words, unlike Confidence 
(the assistant was very confident in its prediction), and unlike Similarity (the message 
was fairly similar to other messages). Given this complementarity among the different 
methods, we hope in the future to evaluate a combination (e.g., a weighted average or 
voting scheme) of prioritization methods, thus enabling users to quickly find a wider 
variety of bugs than they could using any one method alone. 

6.2   RQ2 (Satisfaction): User Attitudes 

Participants appeared to recognize the benefits of systematic testing, indicating in-
creased satisfaction over ad hoc testing. When asked “How much did each system 
help you find the computer’s mistakes?” on a seven-point Likert scale, an ANOVA 
contrast again confirmed that responses differed between treatments (Table 1, row 2), 
with WYSIWYT/ML treatments rated more helpful than Control. Table 1’s 3rd row 
shows that participant responses to the NASA-TLX questionnaire triangulate this 
result. Together, these results are encouraging from the perspective of the Attention 
Investment Model—they suggest that end users can be apprised of the benefits (so as 
to accurately weigh the costs) of testing an assistant that does work important to them. 

Table 2. The number of participants who found Bug 20635 while working with each 
WYSIWYT/ML treatment 

Treatment Prioritization Found Did not find
Confidence 0.14 9 15 
Similarity 0.58 11 14 
Relevance 1.00 19 4 

6.3   RQ3 (Efficiency): The Partnership’s Test Coverage  

Recall that when a participant tested a message, the system partnered with the user by 
inferring additional tests to “cover” similar messages (recall Figure 4). Coverage can 
be a powerful concept: it enables a user to reduce the number of items they must look 
over while still gaining a reasonable understanding of the assistant’s reliability. It also 
reveals the weaknesses of an assistant’s reasoning in terms of areas not yet covered by 
tests. In other domains, research has generally found that increased coverage increases 
bug finding [5, 8, 25]. Thus, in this section, we consider how much coverage the part-
nership achieved and how this related to participants’ efficiency. 
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Table 3. Tests via check marks, X marks, and topic changes during a 10-minute session (out of 
200 total messages per session), for the three WYSIWYT/ML treatments 

 Mean √s  
participants  
entered per  

session 

Mean Xs  
participants 
entered per  

session 

Mean √s 
inferred  

per session 

Mean Xs 
inferred  

per session 

Total 
√s 

Total 
Xs 

Explicit  Regular: 35.0 
“Maybe”: 7.1 

Regular: 2.4 
“Maybe”: 2.7 

Regular: 46.4
“Maybe”: 8.5

Regular:  4.7
“Maybe”: 2.2

Implicit  8.2 topic changes as shortcuts for 
X+topic+√ 

N/A1 

Total tests 50.3 13.3 54.9 6.9 

 
 

105.2 

 
 

20.2 
 

Total messages tested 2 117.2 
1Although the computer sometimes did change topics, this was due to leveraging tests as increased training 

on message classification. Thus, because these topic changes were not directly due to the coverage (co-
sine-similarity) mechanism, we omit them from this coverage analysis. 

2 Total Tests is larger than Messages Tested because topic changes acted as two tests: an X on the original 
topic, then a √ on the new topic. 

Coverage: How much? Using WYSIYWT/ML, our participants were able to lever-
age their explicit tests by a factor of about 2. Together with the computer-oracle-as-
partner, participants’ mean of 55 test actions using WYSIWYT/ML covered a mean 
of 117 (60%) of the messages—thus, participants gained 62 inferred tests “for free”. 
Table 3 shows the raw counts. With the help of their computer partners, two partici-
pants even reached 100% test coverage, covering all 200 messages within their 10-
minute time limit. 

Further, coverage scaled well. In an offline experiment, we tried our participants’ 
explicit tests on the entire set of Newsgroup messages from the dates and topics we 
had sampled for the experiment—a data set containing 1,448 messages. (These were 
tests participants explicitly entered using either WYSIWYT/ML or Control, a mean of 
55 test actions per session.) Using participants’ 55 explicit tests (mean), the computer 
inferred a mean of 568 tests per participant, for a total coverage of 623 tests (mean) 
from only 10 minutes of work—a 10-fold leveraging of the user’s invested effort. 

Participant and WYSIWYT/ML Approvals vs. Disapprovals. As Table 3 shows, 
participants approved more messages than they disapproved. When participants approved 
a message, their topic choice matched the 20-Newsgroup “gold standard” (the original 
newsgroup topic) for 94% of their regular checkmarks and 81% of their “maybe” check-
marks (the agreement level across both types of approval was 92%). By the same meas-
ure, WYSIWYT/ML’s approvals were also very accurate, agreeing with the gold  
standard an average 92% of the time—exactly the same level as the participants’. 

Participants’ regular X marks agreed with the gold standard reasonably often 
(77%), but their “maybe” X marks agreed only 43% of the time. Informal pilot inter-
views revealed a possible explanation: re-appropriation of the “maybe” X marks for a 
subtly different purpose. When unsure of the right topic, pilot participants said they 
marked it as “maybe wrong” to denote that it could be wrong, but with the intention to 
revisit it later. This indicates that secondary notation (in addition to testing nota-
tion)—in the form of a “reminder” to revisit instead of a disapproval—could prove 
useful in future prototypes. 
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Perhaps in part for this reason, WYSIWYT/ML did not correctly infer many 
bugs—only 19% of its X marks agreed with the gold standard. (The computer’s regu-
lar X marks and “maybe” X marks did not differ—both were in low agreement with 
the gold standard.) The problem cannot be fully explained by participants repurposing 
“maybe” X marks—WYSIWYT/ML’s regular inferred X marks were just as faulty. 
However, this problem’s impact was limited because inferred X marks only serve to 
highlight possible bugs. Thus, the 81% failure rate on WYSIWYT/ML’s average of 
seven X’s per session meant that participants only had to look at an extra five mes-
sages/session. Most inferred tests were the very accurate positive tests (average of 55 
per session), which were so accurate, participants could safely skip them when look-
ing for bugs. 

7   Discussion 

Will end users really explicitly and systematically test an intelligent assistant? Al-
though we did not test this question in our lab study, theory suggests that they will 
when the perceived benefits of doing so outweigh the costs [4]. Until this question can 
be investigated empirically, we target the subset of end users who are willing to ex-
pend at least modest effort to assess assistants on tasks in which mistake types and 
frequencies must be understood before the user would be willing to rely on them, such 
as with Adam’s intelligent qualitative coding assistant. 

Our current similarity-based notion of coverage also warrants further empirical in-
vestigation. It worked well for approvals, but a smaller threshold for disapprovals 
may result in fewer false bug identifications. In the future, we plan a systematic 
evaluation of this threshold and its impact on different aspects of WYSIWYT/ML.  

Finally, we emphasize that finding (not fixing) bugs is WYSIWYT/ML’s primary 
contribution toward debugging. Although WYSIWYT/ML leverages user tests as 
additional training data, simply adding training data is not an efficient method for 
debugging intelligent assistants. To illustrate, our participants’ testing labeled, on 
average, 55 messages, which increased average accuracy by 3%. In contrast, partici-
pants in another study that also used a subset of the 20 Newsgroup dataset spent their 
10 minutes debugging by specifying words/phrases associated with a label [32]. They 
entered only about 32 words/phrases but averaged almost twice as much of an accu-
racy increase (5%) in their 10 minutes. Other researchers have similarly reported that 
allowing users to debug by labeling a word/phrase is up five times more efficient than 
simply labeling training messages [23]. Thus, rather than attempting to replace the 
interactive debugging approaches emerging for intelligent assistants (e.g., [17, 18, 22, 
30]), WYSIWYT/ML’s bug-finding complements them. It provides the missing test-
ing piece, suggesting where important bugs have emerged and when those bugs have 
been eradicated, so that end users need not debug blindly.  

8   Conclusion  

With the increase in intelligent assistants helping with critical tasks comes the need to 
rethink the nature of how end users can assess whether and when to rely on their as-
sistants’ help. WYSIWYT/ML is the first work to address this need. 
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WYSIWYT/ML is a human/computer partnership that enables end users to assess 
intelligent assistants systematically. The human’s role is to approve or disapprove 
(i.e., test) portions of the assistant’s work. The computer’s role is to advise the user 
about testing priorities, contribute additional tests similar to the user’s (which the user 
may verify), measure how much of the assistant’s reasoning has been assessed, and 
monitor the need for additional assessment as the assistant evolves over time. 

Our empirical evaluation showed that systematically testing with WYSIWYT/ML 
resulted in a significant improvement over ad hoc methods in end users’ abilities to 
assess their assistants: our participants found almost twice as many bugs with our best 
WYSIWYT/ML variant as they did while testing ad hoc. Further, the approach scales: 
participants covered 117 messages in the 200-message data set (over twice as many as 
they explicitly tested) and 623 messages in the 1448-message data set (over 10 times 
as many as they explicitly tested)—all at a cost of only 10 minutes work. 

Thus, systematic assessment of intelligent assistants was not only effective at find-
ing bugs—it also helped ordinary end users assess a reasonable fraction of an assis-
tant’s work in a matter of minutes. These findings strongly support the viability of 
bringing systematic testing to this domain, empowering end users to judge whether 
and when to rely on intelligent assistants that support critical tasks. 
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