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Abstract

Many machine-learning algorithms learn rules of
behavior from individual end users, such as task-
oriented desktop ~ organizers  and  handwriting
recognizers. These rules form a generated “program”
tailored specifically to the behaviors of that end user,
telling the computer what to do when future inputs
arrive. Researchers, however, have only recently
begun to explore how an end user can debug these
programs when they make mistakes. We present our
progress toward enabling end users to test and debug
learned programs so that everyone can benefit from
intelligent programs adapted to their specific tasks and
situations.

1. Introduction

An increasingly wide range of end-user
applications use machine-learning techniques to adapt
to the user or automate repetitive tasks. Tools such as
facial recognition in photography programs, junk mail
filtering, and recommendation systems all generate
rules of behavior based on the specific idiosyncrasies
of a particular end user. The resulting classifier can
thus be thought of as a learned program: like
traditional programs, outputs are determined by the
learned program’s internal logic operating on given
inputs. Research into end-user programming has
sought to democratize creation of computational tools
in domains such as web programming and
spreadsheets. Learned programs, tailored to an end
user’s individual behaviors, are a new generation of
end-user programs.

When a learned program makes a mistake, such as
misclassifying an e-mail message as junk, who can fix
it? Unlike traditional software, a learned program has
never been seen by a human programmer: it was
generated by a learning algorithm. Further, this
generated program is specific to an end user’s
behavior. Thus, the particular end user is the only
oracle for judging whether the program is behaving
properly, and if not, is the only person with the
knowledge to properly correct it.

Thus, unless the learned program is perfect (which
is unlikely), we believe the end user must be able to
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debug the program’s faults. This presents an immediate
challenge: in a learned program, what are faults? The
generating algorithm may appear to operate exactly as
intended, but the generated program may still contain
logic that does not match the end user’s intentions. It is
in this learned logic, then, that the fault lies, and thus
this logic is what the user must be able to correct.
While a machine learning expert may be able to
quickly scan a misclassified e-mail and conclude likely
reasons for the learned program’s error (such as the
presence of a unique word that is frequently associated
with junk mail), how can such reasoning be
communicated to an end user? Furthermore, how can
that user explain back to the computer 1) that what it
did was wrong, and 2) why it was wrong, so as to avoid
similar failures in the future?

Our approach to support end users debugging
machine-learned  programs  consists of  three
components: user testing of the learned program to find
failures (wrong behaviors and outputs), machine-
generated explanations of the program’s logic to
uncover faults (reasons for the failures), and support
for corrective user feedback to fix the detected faults.

2. Communicating with learned programs

Our research has thus far focused on the linked
questions of whether a learned program can
successfully explain its reasoning to an end user, and
whether a user armed with such knowledge can adjust
the program’s logic to satisfactorily match the user’s
expectations. One of the central issues involved in
answering these questions is determining the types of
information presented to end users, and how this
information should be represented.

We have run a pair of user studies with different
representations of a learned program’s “source code”.
One used an interactive bar graph showing the
importance of each word to the program’s prediction
[1]; if participants disagreed with the machine-assigned
importance, they could adjust each bar to fix the
program’s logic. A second study wused textual
descriptions of the most important words and allowed
users to highlight new words (indicating importance)
or remove currently important words. Neither study
yielded significant improvements in classification
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accuracy: participants were only marginally more
likely to make the program better as they were to harm
its accuracy.

Is explaining the program’s logic enough, or do
other types of information lead to better debugging
success? Just as professional software engineers would
be at a disadvantage debugging a program via source
code modifications alone (as opposed to viewing the
program’s runtime state with a debugger), we felt end
user debuggers would benefit from knowledge of the
program’s execution state. The second study described
above included a treatment presenting a collection of
runtime information to participants, such as the
machine’s confidence in its predictions. Participants
using this treatment did significantly improve the
accuracy of their learned program, suggesting that
“source code” representations may be Dbetter
understood by users when paired with additional
information about the program’s current runtime state.

Our preliminary research has begun enumerating
barriers that end users encounter while debugging a
learned program, such as not knowing how to select
specific areas of the program’s logic to fix, and having
difficulty coordinating how those fixes affect the
program’s predictions [1]. Efforts to overcome these
barriers include approaches for steering users toward
the sections of a program’s logic most responsible for a
given prediction, as well as determining in real time
whether a specific user correction will help or harm the
accuracy of the learned program.

3. Testing learned programs

How does a user know whether or not to trust the
predictions of a learned program? Lacking an answer
to this question, the user would not even know if they
should debug the program. Without systematic testing,
a user’s most obvious recourse is to base trust on the
number of good and bad predictions the program has
made in the past, but this raises two issues: 1) such ad-
hoc testing may not exercise many areas of the learned
program’s logic, the equivalent of (perhaps severely)
incomplete software testing coverage, and 2) as the
learned program continues to adapt to a user’s
behavior, the changes introduced may cause previously
good predictions to become incorrect, and vice-versa.
To come back to our e-mail example, a user needs to
know whether to continually check the Junk folder for
important, misclassified messages. Furthermore, every
time the learned program changes, the user may need
to re-evaluate whether now they can trust the
program’s output.

To address these issues, we are revisiting the What
You See Is What You Test (WYSIWYT) approach,
successfully used to support end-user programmers
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testing spreadsheets [2], to understand whether such an
approach can be applied to test learned programs. A
great strength of WYSIWYT is its ability to bring the
benefits of structured software testing to end-user
programming environments, allowing end users to
directly benefit from software engineering best
practices. This aligns precisely with our goal of
showing end users in real time which of the program’s
predictions they can trust, and which may be suspect.
When combined with the debugging approaches
outlined above, we hope that WYSIWYT/ML will
serve a dual purpose by also enabling end users to
quickly find the areas of a program’s logic that are
responsible for erroneous predictions (i.e., the areas
that most need to be debugged).

Our work on WYSIWYT/ML began with an
exploration of test prioritization metrics largely unique
to machine learning, such as prioritizing tests based on
a classifier’s confidence in each prediction (A test in
this new domain represents the user verifying one of
the program’s predictions as either right or wrong).
Offline tests revealed that some of our prioritizations
were surprisingly accurate (up to 80%) at selecting
incorrect predictions for users to test. We are now
preparing a prototype for a user study to evaluate three
of the most promising prioritizations: classifier
confidence, Euclidean similarity of test data, and
absence of words the program considers highly
relevant to classification.

Test prioritization is supported by the notion of
test coverage. We have developed a method employing
cosine similarity to identify especially similar
predictions. A single user test may thus cover multiple
predictions, relieving the end user of the burden of
examining every machine-made prediction. This aspect
is critical to any testing effort because the number of
eventual inputs will be infinite: a systematic way to
cover multiple predictions with one test is necessary.

We soon plan to empirically evaluate our approach
via the upcoming user study, the results of which will
inform our attempts to meld support for end-user
testing and end-user debugging of machine-learned
programs. It is our hope that such support will lead to
uniquely adapted machine-learned programs that end
users can test, debug, and trust.
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