
   

Can Feature Design Reduce the Gender Gap  

in End-User Software Development Environments? 
 

Valentina Grigoreanu1, Jill Cao1, Todd Kulesza1, Christopher Bogart1,  
Kyle Rector1, Margaret Burnett1, and Susan Wiedenbeck2 

1Oregon State University and 2Drexel University 
{grigorev, caoch, kuleszto, bogart, rectorky, burnett}@eecs.oregonstate.edu,  

Susan.Wiedenbeck@cis.drexel.edu 
 

Abstract  
Recent research has begun to report that female end-
user programmers are often more reluctant than males 
to employ features that are useful for testing and de-
bugging.   These earlier findings suggest that, unless 

such features can be changed in some appropriate 
way, there are likely to be important gender differences 
in end-user programmers’ benefits from these features.   
In this paper, we compare end-user programmers’ 
feature usage in an environment that supports end-user 
debugging, against an extension of the same environ-
ment with two features designed to help ameliorate the 

effects of low self-efficacy.   Our results show ways in 
which these features affect female versus male end-
user programmers’ self-efficacy, attitudes, usage of 
testing and debugging features, and performance. 
 

1.  Introduction  

Although there is a large body of literature about is-
sues facing women in IT professions, until recently, 

researchers had not considered how gender differences 
interact with features and tools in programming envi-
ronments.  However, researchers are now beginning to 
report theory and empirical data pointing to gender 
differences in the use of end-user programming envi-
ronments.  Evidence of these differences has accumu-
lated, indicating gender differences in programming 

environment appeal, playful tinkering with features, 
attitudes toward and usage of end-user programming 
features, and end-user debugging strategies [2, 3, 6, 12, 
14, 17, 18, 21].   

In these studies, females have been shown to both 
use different features and to use features differently 
than males.  Even more critically, the features most 

conducive to females’ success are different from the 
features most conducive to males’ success—and are 
the features least supported in end-user programming 
environments.  This is the opposite of the situation for 
features conducive to males’ success [21]. 

These studies have not delved into how to remedy 
this situation so that feature barriers to females’ suc-

cess can be removed.  Although a few isolated solu-
tions have been reported [12, 18], these solutions have 
not been tied to theory, and therefore do not provide 

designers of end-user programming environments the 
fundamental information they need about how to find 
and remove such barriers in their own environments.   

In this paper, we tackle this issue.  Our long-term 
research goal is to answer the following question: 

Can theory be directly applied to end-user pro-
gramming environment features to narrow the gender 

gap in end-user programmers’ debugging success, by 
better supporting females? 

The answer to this question holds the key to ena-
bling designers of end-user programming environments 
to spot barriers in their own tool set, and further, to 
figure out what is needed to remove them.   

In earlier research, we proposed two theory-based 

features that aimed to improve female performance 
without harming male performance: (1) adding “may-
be” nuancing, inspired by self-efficacy theory, to fea-
tures with which users input quality judgments and (2) 
integrated explanations geared toward gender dif-
ferences in information processing and problem-
solving styles [4].  We evolved these features over 

three years through the use of formative investigations, 
drawing from education theory, self-efficacy theory, 
information processing theory, metacognition, and 
curiosity theory [4, 13, 20].   

In this paper, we now face the challenge head-on.  
Namely, we committed these features to a robust im-
plementation, and we investigated statistically whether 

they do indeed help to remove barriers to female end-
user programmers’ debugging efforts.   

Our specific research questions were: 
(RQ 1): Do these features help to close the gender 

gap in feature usage for female and male end-user 
programmers? If so, how does that relate to their suc-
cess? 

(RQ 2): Do these features help decrease the gap be-
tween females' and males’ debugging self-efficacy? If 
so, how does that relate to their debugging success? 

2.  Background  

2.1 Theoretical and Empirical Basis  

Self-efficacy theory has had a strong influence on 
our work.  Bandura’s social-cognitive theory identifies 
self-efficacy (or confidence in one’s ability to carry out 

2008 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

1-4244-2528-0/08/$25.00 ©2008 IEEE 149

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 2, 2008 at 17:06 from IEEE Xplore.  Restrictions apply.



   

a specific task) as a key element in performance out-
comes.  People with low self-efficacy for a task tend to 
expend less effort on the task, use simpler cognitive 
strategies, show less persistence when encountering 
difficulties, and ultimately finish with a lower success 
rate than people with high self-efficacy [1].   

In software applications, studies have found gender 

differences in self-efficacy.  Females generally have 
lower computer self-efficacy than males, and this has 
been tied to feature usage [9].  Our own studies of both 
student and professional end-user debuggers have also 
found these effects [2, 3].  For example, females’ self-
efficacy was predictive of successful use of debugging 
features, whereas males’ feature usage was not tied to 

their self-efficacy.  Further, unlike males, females were 
less willing to engage with, or even to explore, novel 
debugging features.  This is unfortunate, because such 
features have been tied to improved debugging per-
formance by both females and males.   

For example, the Forms/3 spreadsheet environment, 
in which we prototype our ideas, includes WYSIWYT 

features (What You See Is What You Test) [7] (Figure 
1).  This set of debugging features allows users to 
make decisions about the correctness of cells’ output 
values, and then provides feedback to help them find 
and fix formula errors.  When the user notices a correct 
cell value and puts a checkmark ( ) in the cell’s deci-
sion box (as in cell F3 in Figure 1, for example), the 

system increases the testedness of that cell and of the 
other cells that contributed to its value.  These changes 
are reflected in the cell’s border colors (red for un-
tested, blue for tested, and shades of purple for partly 
tested; shown as shades of gray in this paper).  Overall 
testedness of the spreadsheet is also reflected in the 
progress bar at the top of the screen.  Instead of check-

ing off a value, if the user sees an incorrect cell value 
and puts an X-mark in the cell (as in cell E3), fault-

likelihood calculations are triggered, which highlight 
the interior of cells that are likely to contain faulty 
formulas.  The interior highlights follow a color con-
tinuum from light yellow for cells not likely to contain 
a formula error, to orange for cells with formulas very 
likely to contain an error (e.g., cell E3).  Also, optional 
arrows can show dataflow relationships of cells; the 

arrows are colored using the same color scheme as the 
cell borders, to reflect testedness of the relationships.  
Tool tips briefly explain the semantics of each feature, 
suggest an action, and hint at a reward [7]. 

We have reported in previous studies [2, 3] females’ 
lack of willingness to even try out the WYSIWYT fea-
tures.  Trying out new things by tinkering with them is 

a curiosity-based, playful behavior that leads to open-
ended exploration in learning [19].  Such unguided, 
informal exploration has been shown to improve both 
motivation to learn and task performance [15], but re-
search in education suggests that females are less likely 
to tinker than males [10].  Our own investigations have 
confirmed females’ lack of willingness to tinker [2].  

Self-efficacy theory suggests that females’ low com-
puter self-efficacy decreased their willingness to tinker, 
denying them the benefits of exploratory learning and 
depressing the adoption of unfamiliar features.  The 
solution, however, does not lie solely in encouraging 
tinkering—our previous results indicate that tinkering 
in overly complex environments can have the detri-

mental effect of decreasing females’ self-efficacy [2].  
Thus, if tinkering is to be helpful, it may need to in-
volve features well-matched to the user’s problem-
solving style. 

Another theory that has had a strong influence on 
our work is information processing theory [16].  This 
theory proposes that, as a group, females seek more 

comprehensive information than males do, although 
males tend to seek this too when problems become 

 
Figure 1.  Forms/3 spreadsheet with WYSIWYT features.  (Version used by the Control group.) 

150

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 2, 2008 at 17:06 from IEEE Xplore.  Restrictions apply.



   

complex.  We conducted formative empirical work to 
better understand what information end users seek 
when debugging [13].  Strategy information emerged 
as one of the top needs.  Better ability to self-judge was 

another high-ranking information need, which is close-
ly related to self-efficacy. 

2.2 The Features   

Given the results above, we looked for methods that 
might improve females’ self-efficacy and willingness 

to try out, and ultimately to effectively use, the novel 
debugging features.  The result was two feature 
changes.  The first was adding “maybe” nuances to the 
checkmarks and X-marks (Figure 2), which we pro-
posed earlier but did not statistically test [4].  The em-
pirical work leading to this change suggested that the 
original “it’s right” and “it’s wrong” checkmark and X-

mark might seem too assertive a decision to make for 
low self-efficacy users, and we therefore added “seems 
right maybe” and “seems wrong maybe” checkmark 
and X-mark options.  The change was intended to 
communicate the idea that the user did not need to be 
confident about a testing decision in order to be “quali-
fied” to make judgments.  In the current paper we sta-

tistically investigate whether this feature does indeed 
help females, without hurting the males. 

The second change, also proposed in [4], was a 
more extensive set of explanations, to explain not only 
concepts but also to help close Norman’s “gulf of eval-
uation” by enabling users to better self-judge their 
problem-solving approaches.  We evolved that pro-

posal [20], ultimately providing the strategy explana-
tions of the current study.  Note that these are explana-
tions of testing and debugging strategy, not explana-
tions of software features per se. 

The strategy explanations are provided as both vid-
eo snippets and hypertext (Figure 3).  In each video 
snippet, the female debugger works on a debugging 

problem and a male debugger, referring to the spread-
sheet, helps by giving strategy ideas.  Each snippet 
ends with a successful outcome.  The video medium 
was used because theory and research suggest that an 
individual with low self-efficacy can increase self-
efficacy by observing a person similar to oneself strug-
gle and ultimately succeed at the task [1, 8].  The hy-

pertext version had exactly the same strategy informa-
tion, with the obvious exception of the animation of the 
spreadsheet being fixed and the talking heads.  We 

decided on hypertext because it might seem less time-
consuming and therefore more attractive to users from 
an attention investment perspective [5], and because 
some people prefer to learn from text rather than picto-

rial content.  Recent improvements to the video expla-
nations include shortening the explanations, revising 
the wording to sound more like a natural conversation, 
and adding an explicit lead-in question to immediately 
establish the purpose of each explanation. 

3.  Experiment  

3.1 Design 

The experiment was a 2x2 between-subjects design 
with gender (female/male) and condition (Treat-
ment/Control), carried out in a computer laboratory.  
The Treatment group's environment was the same as 
the Control group’s (Figure 1) with the addition of the 
“maybe” marks and the strategy explanations features 

(Figure 2 and Figure 3).  We 
did not isolate each feature 
in its own treatment because 
we feared that a single fea-
ture alone might not be 
enough to make a differ-
ence.  This was important 

because the overall goal was 
to ascertain whether it is 
possible to make a differ-
ence in the gender gap 
through feature design. 

3.2 Participants   

The participants were 65 
female and 67 male students 
from a variety of majors.  
Participants were required 
to have previous spread-
sheet experience, including 

use of formulas, but could 
not have much program-
ming experience.  About 
half the participants were 
from non-technical majors.  
There were no significant 
differences across gender or 

group in GPA, age, year in 
school, programming expe-
rience, or spreadsheet expe-
rience. 

3.3 Materials and Task   

A pre-session question-
naire gathered background 

                               
 

       

Figure 2: Clicking on the checkbox turns it 
into four choices whose tool tips say “it s 

wrong,” “seems wrong maybe,” “seems right 
maybe,” “it s right.” 

 
_________ 

 

Figure 3: (Top): 1-
minute video snip-

pets.  (Bottom):  Hy-
pertext version. 

151

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 2, 2008 at 17:06 from IEEE Xplore.  Restrictions apply.



   

information and self-efficacy based on a slightly modi-
fied version of Compeau and Higgins’ validated scale 
[8]; the modifications made the questionnaire task-
specific to end-user debugging.  In post-session ques-

tionnaires participants answered the same self-efficacy 
questions, rated the usefulness of the features, and an-
swered an open-ended question about how parts of the 
software affected their confidence in finding and fixing 
bugs. 

The hands-on portion began with a 30-minute “tour 
of features” tutorial, which explained what the features 

in the spreadsheet environment meant, but it did not 
imply any strategies for how best to use these features.   

The participants were instructed to “test the updated 
spreadsheet and if [they] find any formula errors, fix 
them.” The spreadsheet had previously been seeded 
with six bugs that we have used in many previous ex-
periments [2, 4, 13, 20, 21]; these were originally har-

vested from end users.  Participants had 45 minutes to 
complete the task.  The Treatment group was inter-
rupted after 30 minutes and asked to view either a vid-
eo or hypertext explanation of their choice.  This 
interruption was necessary to ensure actual usage of 
the explanations; without usage, we could not have 
collected data on their usefulness. 

4.  Analysis Methodology 

4.1 Measures   

In this study, we were interested in only certain 
comparison groups: Treatment females vs. Control 
females to see if the Treatment helped females, 
Treatment males vs. Control males to see if males’ 
performance was affected, and “gender gaps”, i.e., 
Treatment female/male differences versus Control 

female/male differences. 
In making comparisons, two potential confounds 

had to be taken into account: gender/group differences 
in pre-self-efficacy, and individual differences in 
minutes available for debugging.   

Regarding pre-self-efficacy, analysis of pre-session 
questionnaires revealed that females in the Treatment 

group had significantly lower pre-self-efficacy than 
females in the Control group (Treatment females: 
M=36.82, SD=5.22; Control females: M=40.13, 
SD=4.28; ANOVA: F(1,63)=7.96, p<.0064).  (Recall 
that there were no significant differences otherwise in 
participant background (e.g., academic areas, age, etc.) 
among the groups.) Consequently, except where noted, 

all statistical tests were done in ways that took pre-self-
efficacy into account. 

Regarding minutes available for debugging, the de-
bugging time available to Treatment participants varied 
by individual, depending on how much time they spent 
on explanations.  To account for the time differential, 
we calculated debugging minutes as ((45*60) – expla-

nation seconds)/60, where 45 was the number of min-
utes given to debug the spreadsheet, and explanation 
seconds was the time a participant spent viewing the 
strategy explanation videos and/or text.  We counted 

“explanation seconds” from the time they touched a 
strategy explanation until there was any event (even a 
simple mouse movement) in the spreadsheet area.  
Thus, except where noted, all statistical tests were done 
in ways that also took debugging minutes into account.  

To take these covariates into account and to allow 
direct row-wise and column-wise comparisons (e.g., 

analyzing female differences by comparing Treatment 
females vs. Control females), we used one-way AN-
COVAs and linear regressions, and in the few cases 
where ANOVAs were appropriate, we used one-way 
ANOVAs. 

4.2 Coding Methodology   

The post-session questionnaire’s open-ended confi-
dence question asked participants which parts of our 
software affected their confidence in their ability to fix 
bugs and how their confidence was affected.  To ana-
lyze their responses, we began by deriving codes close 
to the words used by the participants in their answers.  

We then iteratively regrouped the low-level codes to 
generalize them.  The result was two 3-level trees of 
codes, one tree for comments about positive effects on 
confidence (+) and a mirror image for comments about 
negative effects on confidence (-).  The top level of the 
tree included six codes: environmental conditions, user 
features, software feedback, information given, soft-

ware usability, and experiment setup. 
Two researchers individually coded 20 participants’ 

answers using this scheme, achieving a 91% agreement 
rate.  Given the high agreement, a single researcher 
coded all remaining participants’ answers. 

5.  Results   

Although not our primary research question, the 
reader may be wondering whether males or females 

fixed more bugs.  If we do not take into account self-
efficacy and actual time spent debugging, males fixed 
significantly more bugs than females (females: 
M=2.88, SD=1.75; males: M=3.84, SD=1.46; ANOVA: 
F(1,130)=15.67, p<.00013) and achieved a signifi-
cantly higher maximum percent testedness (females: 
M=0.49 (49.1% testedness), SD=0.24; males: M=0.64, 

SD=0.19; ANOVA: F(1,130)=15.05, p<.00017).  This 
is not surprising given our setting.  Previous studies 
have revealed numerous barriers to females’ success in 
debugging spreadsheets, showing that males use 
spreadsheet testing and debugging features more than 
females [2, 3], and that their strategies are better sup-
ported by the debugging features present in this envi-

ronment [21]. 
The issue of interest to this paper is whether the 

152

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 2, 2008 at 17:06 from IEEE Xplore.  Restrictions apply.



   

new features in the Treatment group helped to close the 
gender gap.  The Treatment females did not fix more 
bugs than Control females, but we would not expect 
them to: Treatment females had both lower self-

efficacy than Control females and more things to take 
their time than Control females did, as we have already 
discussed.  However, as our analysis in the next few 
sections shows, taking the self-efficacy and time fac-
tors into account reveals that the new features helped to 
close the gender gap in numerous ways. 

5.1 The Gender Gap and Debugging Features 

First we consider the relationship between our fea-
ture changes and the debugging feature usage gap for 
males and females.  When we compared the males and 
females in the Treatment group to their counterparts in 
the Control group, a clear answer emerged: our feature 

changes did lead to greater interest among the Treat-
ment group.  Compared to females in the Control 
group, Treatment females made more use of debugging 
features such as checkmarks and X-marks, and had 
stronger ties between debugging feature usage and 
strategic testing behaviors.  The mean and standard 
deviation for usage of each type of feature are detailed 

in Table A1 (Appendix A). 
As in prior studies, we took playful experimentation 

with the checkmarks and X-marks (trying them out and 
then removing them) as a sign of interest.  Past studies 
reported that females were unwilling to approach these 
features, but that if they did choose to tinker, their ef-
fectiveness improved [2, 3]. 

Treatment females approached (tinkered with) the 
features significantly more than Control females, and 
this pattern held for both checkmarks and X-marks.  
Figure 4 illustrates these differences.  Regarding these 
and other feature usage behaviors, Table 1 shows the 
statistics.  For checkmarks, we used ANCOVA, to take 
self-efficacy into account; for X-marks we used Wil-

coxon rank-sum, since the number of ties at zero made 
the distribution non-normal.  Since Wilcoxon does not 
facilitate a way to take self-efficacy into account, these 

results are especially noteworthy: despite significantly 
lower self-efficacy, Treatment females showed more 
interest in the features than Control females.   

Why these effects? One reason may be the “maybe” 

checkmarks and X-marks, which were available in the 
Treatment environment (see Table 1).  (Recall that the 
features are designed to ameliorate differences between 
low self-efficacy and high self-efficacy users.  Hence, 
we did not use self-efficacy as a covariate in this test 
because doing so makes allowances for lower self-
efficacy users, and we wanted results for that test with-

out such allowances.) 
Even more important than debugging feature usage 

per se was the fact that the feature usage was helpful.  
The total  (playful plus lasting) number of checkmarks 
used per debugging minute, when accounting for pre-
self-efficacy, predicted the maximum percent tested-
ness per debugging minute achieved by females in both 

the Control group (total  checkmarks per debugging 
minute: M=0.59, SD=0.43; ANCOVA: F(2,27)=18.04, 

=0.0099, R
2
=0.57, p<.000010) and in the Treatment 

group (total  checkmarks per debugging minute: 

M=0.63, SD=0.53; ANCOVA: F(2,32)=31.11, 
=0.0074, R

2
=0.66, p<.000010).  Further, for all par-

ticipants, maximum percent testedness, accounting for 
pre-self-efficacy, was a significant factor in the number 

of bugs fixed (maximum percent testedness: M=0.57 
(56.5% testedness), SD=0.22; bugs fixed: M=3.36, 
SD=1.65; ANCOVA: F(2,129)=8.88, =2.47, R

2
=0.12, 

p<.00024). 

There is one very familiar feature that successful 
testers and debuggers must use: editing.  However, 
overreliance on editing as one’s main problem-solving 
feature is time-wasting and can lead to introducing 
errors.  Past studies have reported an overreliance by 
females on these familiar features [2], a finding consis-
tent with their often low self-efficacy.   

In the current study, Treatment females’ usage of 

Table 1: Tinkering.  35 Treatment females, 30 
Control females, 34 Treatment males, 33 Con-

trol males. **: p<0.01, *: p<0.05, ~: p<0.1. 
 

 TF vs.  CF TM vs.  CM Test 

Playful 
checkmarks/ 
minute 

TF more: 
F(2,62)=2.779 
p<.022* 

not significant ANCOVA 

Playful  
X-marks/ 
minute 

TF more: 
Z=-2.47 
p<.014* 

TM more: 
Z=-2.02 
p<.044* 

Wilcoxon 

Lasting 
checkmarks/ 
minute 

not significant not significant ANCOVA 

Lasting  
X-marks/ 
minute 

TF more: 
Z=-2.70  
p<.070~ 

TM more: 
Z=-2.09  
p<.037* 

Wilcoxon 

 TF vs.  TM   

“Maybe” 
marks/ 
minute 

TF more: 
F(1,67)=3.98 
p<.0503~ 

 ANOVA 

 
Figure 4: Tinkering with X-marks (left) and -

marks (right), in marks per debugging minute. 
Note the gender gaps between the Control 
females  and males  medians.  These gaps 

disappear in the Treatment group. 

153

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 2, 2008 at 17:06 from IEEE Xplore.  Restrictions apply.



   

editing was superior to Control females’.  Specifically, 
value edits significantly predicted maximum percent 
testedness per debugging minute for Treatment females 
(ANCOVA: F(2,32)=4.18, =0.014, R

2
=0.21, p<.039), 

but not for Control females (ANCOVA: F(2,27)=0.77, 
=0.0056, R

2
=0.054, p<.28).  Testing is trying values, 

but testedness advances based on coverage of formula 
interrelationships.  Thus, in order to increase the 
spreadsheet’s testedness, value edits must be done in-
telligently, such as by picking values that test each 
clause of an if/then expression.  The fact that value 
edits were predictive of Treatment females’ maximum 

percent testedness shows the participants were indeed 
choosing effective values, thus implying that they were 
using the testing strategy supported by the WYSIWYT 
features. 

Treatment females’ formula edits did not predict 
testedness (ANCOVA: F(2,32)=1.61, =-0.0001, 

R
2
=0.091, p<.98), which makes sense since testing is 

about values.  However, Control females’ did—but in a 
negative direction (ANCOVA: F(2,27)=2.39, 

=-0.0064, R
2
=0.15, p<.045)! Obviously, the greater 

proportion of time people devote to editing formulas, 
the less time they have to use the testing and debug-
ging features.  Overreliance on editing formulas thus 
interferes with real progress in testing, just as happened 
to the Control females. 

Taken together, the feature usage results show 
marked differences between Treatment females versus 
Control females, all of which were beneficial to the 
Treatment females.  In contrast, except where noted 
above, there were no significant differences between 
the male groups.  Most important, none of the changes 
benefiting the females showed adverse effects on the 

males. 

5.2 The Gender Gap in Self-Efficacy 

Self-efficacy has been found to be important to both 
feature usage and to various measures of debugging 
success for female end-user programmers [2, 3].  Thus, 

reducing the gender gap in self-efficacy was one of the 
goals of the new features.   

Debugging is a difficult task, and in our past stud-
ies, participants’ confidence in their debugging has 
always decreased during the experiments.  Consistent 
with this but encouraging, in the current study, measur-
ing the change between pre- and post-self-efficacy 

revealed suggestive evidence that Treatment females’ 
decrease was less than Control females’ decrease (Con-
trol females’ change in self-efficacy: M=-4.05, 
SD=5.00; Treatment females: M=-1.91, SD=5.14; 
ANOVA: F(1,63)=2.86, p<0.096); see Figure 5. 

Low self-efficacy is appropriate when it judges 
one’s abilities accurately.  The problem is only when it 

is inappropriately low (underconfidence) or inappro-
priately high (overconfidence), either of which can 

lead to problems with persistence and strategy deci-
sions.  That is the reason one goal of the features was 
to improve people’s ability to self-judge.   

As Table 2 shows, for both groups of males, their 
post-self-efficacy was appropriate for (predicted by) 
their debugging performance.  Evidence of this regard-
ing Treatment females was suggestive.  There was no 

evidence of it for Control females.   

5.3 What Females Said About Confidence  

We triangulated the suggestive evidence of positive 
effects on Treatment females’ self-efficacy with evi-
dence from what they said. 

A post-session questionnaire asked participants 
which parts of the software affected their confidence in 
their ability to fix bugs.  We analyzed their free-text 
responses, both positive and negative, as described in 
Section 4.2.  An example of a positive statement from 
the Treatment group was: “I really liked the video.  It 
was very helpful and easy to use.  I also like the X-

mark, checkmark system.”   
Treatment females said more positive things about 

the features and information provided to them.  Table 3 
summarizes the analysis results at or approaching sig-
nificance for females.  One Treatment participant 
wrote “I did not know how to test the cells until I 
watched the video.” A Control participant wrote, “The 

x function and highlight of affecting boxes was helpful 

 
Figure 5: Change in self-efficacy for (left) Con-

trol and (right) Treatment participants. 
 

Table 2: Means, SD, and results of linear re-
gression tests as to whether bugs fixed per 
debugging minute is predictive of post-self-
efficacy for Control females, Control males, 
Treatment females, and Treatment males.  

**:p<0.01, *: p<0.05, ~: p<0.1. 
CF CM TF TM 

Bugs: 
M=0.067 
SD=0.042 

Post-SE: 
M=36.12 
SD=5.55 

Bugs: 
M=0.092 
SD=0.026 

Post-SE: 
M=39.50 
SD=4.70 

Bugs: 
M=0.065 
SD=0.039 

Post-SE: 
M=34.86 
SD=6.49 

Bugs: 
M=0.084 
SD=0.040 

Post-SE: 
M=39.12 
SD=5.51 

F(1,28)=2.07 
=34.46 

R2=0.069 
p<.17 

F(1,31)=6.92 
=76.79 

R2=0.18 
p<.014* 

F(1,33)=3.62 
=52.86 

R2=0.099 
p<.066~ 

F(1,32)=6.33 
=56.49 

R2=0.17 
p<.018* 

 

154

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 2, 2008 at 17:06 from IEEE Xplore.  Restrictions apply.



   

to find bugs.” 
Treatment males did not differ much from Control 

males in positive or negative statements.  See Figure 6 
for a comparison with females.  However, the Treat-
ment males did appreciate the availability of explana-

tions: they spoke more positively about information 
than their Control counterparts did (Wilcoxon rank-
sum test: Z=-2.21, n=67, p<.028).  There were no other 
significant differences for males. 

The significant differences in positive statements by 
Treatment females support the hypothesis that the 
Treatment environment supported females’ confidence 

better than the Control environment. 

6.  Discussion  

As we mentioned earlier, this experiment did not 
tease apart the impacts of the nuanced (“maybe”) 
judgments feature from the impacts of the strategy ex-
planations.  We expected the use of strategy explana-
tions to be a factor in closing the gap between females’ 

and males’ debugging success, as recent studies have 

shown the benefit of tutorial materials on females’ per-
formance in software development tasks [9, 11, 20].  
But we do not know whether this was the case; we did 
not find direct evidence of an impact of the strategy 

explanations alone on female success rates.   
We had hoped to investigate this by analyzing rela-

tionships between the number of minutes spent view-
ing explanations and measures of each participant’s 
success.  Assessing ties to success involves interaction 
of participants’ use of strategies and their self-efficacy.  
The relationships in our data appear to be both com-

plex and non-linear, making it difficult to interpret 
their meaning.  Further research will require in-depth 
qualitative investigation to better understand what in-
dividuals learned from the strategy explanations and 
how they applied this knowledge to their debugging 
task.     

The combination of nuance and strategy explana-

tions was tied to numerous quantifiable benefits for 
females.  Gender differences in problem-solving strate-
gies may explain this outcome.  In a recent study [21], 
we found eight strategies that male and female partici-
pants used to debug spreadsheets, such as “code 
inspection,” “dataflow,” “fixing formulas,” and “test-
ing”.  Of the eight strategies, there were significant 

gender differences in seven.  None of the females’ 
most effective strategies (code inspection and specifi-
cation checking) are well supported by spreadsheet 
software (ours or others’), whereas males’ most effec-
tive strategies (testing and dataflow) are well sup-
ported.   

The testing and dataflow-following strategies were 

not tied with success for females in the study of [21].  
Yet, the new features in this study try to encourage 
their use, and succeeded: females indeed seem to have 
done just what we encouraged, namely applying the 
recommended strategies of testing and following dataf-
low, which worked to their advantage.  It is not clear, 
however, whether nudging females in this direction is 

ultimately the ideal approach.  In the future, we plan to 
investigate whether adding features supportive of 
strategies favored by females, such as code inspection, 
will be a better approach than encouraging them 
toward the strategies currently favored by males. 

7.  Conclusion  

Our results serve to reconfirm previous studies’ re-
ports of the existence of a gender gap related to the 

software environments themselves in the realm of end-
user programming.  However, the primary contribution 
is that they show, for the first time, that it is possible to 
design features in these environments that lower barri-
ers to female effectiveness and help to close the gender 
gap.  Specifically, with the addition of nuancing to our 
testing judgment feature and video/text strategy expla-

nation snippets: 

Table 3: Means, SD, and results of Wilcoxon 
rank-sum tests of 35 Treatment females  and 

30 Control females  responses as to influ-
ences on their confidence. 

 CF TF Result 

Positive state-
ments overall 

M=0.63 
SD=0.93 

M=1.26 
SD=1.20 

TF more: 
Z=-2.29, 
p<.022*  

Negative state-
ments about 
experiment 

M=0.40 
SD=0.50 

M=0.20 
SD=0.47 

TF less: 
Z=1.92, 
p<.055~ 

Positive state-
ments about 
information 

M=0.03 
SD=0.18 

M=0.37 
SD=0.65 

TF more: 
Z=-2.70. 
p<.0070** 

Positive state-
ments about 
features 

M=0.10 
SD=0.31 

M=0.29 
SD=0.52 

TF more: 
Z=-1.63, 
p<.103 

 
All positive statements (positive) 

0

5

10

15

20

25

30

CM CF TM TF

 

Information (positive) 

0

5

10

15

20

25

30

CM CF TM TF

 
Features (positive) 
 

0

5

10

15

20

25

30

CM CF TM TF

 

Experiment (negative) 
 

0

5

10

15

20

25

30

CM CF TM TF

 

Figure 6.  Selected counts of participants 
making positive or negative statements.  Bars 
represent the number of participants in each 

group who made each type of comment. 

155

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 2, 2008 at 17:06 from IEEE Xplore.  Restrictions apply.



   

• Regarding RQ1, females’ usage of test-
ing/debugging features increased, and this fea-
ture usage translated into testing and debugging 
improvements; 

• Regarding RQ2, females’ confidence levels im-
proved and their self-judgments were roughly 
appropriate indicators of their actual ability lev-
els; and 

• Also regarding RQ2, females’ post-session ver-
balizations showed that their attitudes toward 
the software environment were more positive. 

Furthermore, these gains for females came without 
disadvantaging the males.  Designers of end-user pro-
gramming environments can therefore deploy these 
features into their own environments to help remove 
unintended barriers that currently impede females’ full 
participation in end-user programming tasks.   

Acknowledgements    

We thank the participants of our study.  We also 

thank Derek Inman and Joe Markgraf for their help 
with the experiment.  Discussions with our EUSES 
colleagues have benefited this work.  This work was 
supported by NSF CNS-0420533, by the EUSES Con-
sortium via NSF CCR-0325273 and CCR-0324844, and 
by an IBM International Faculty Award. 

References 

[1] Bandura, A.  Self-efficacy: Toward a unifying theory of 
behavioral change.  Psychological Review 8, 2 (1977), 
191-215. 

[2] Beckwith, L., Burnett, M., Grigoreanu, V., and Wieden-
beck, S., Gender HCI: What about the software? Com-
puter, IEEE (Nov.  2006), 83-87. 

[3] Beckwith, L., Inman, D., Rector, K., Burnett, M., On to 
the real world: Gender and self-efficacy in Excel, In Proc.  
VLHCC, IEEE (2007), 119-126.   

[4] Beckwith, L., Sorte, S., Burnett, M., Wiedenbeck, S., 
Chintakovid, T., and Cook, C., Designing features for 
both genders in end-user programming environments, 
Proc.  VLHCC, IEEE (2005), 153-160.   

[5] Blackwell, A.  First steps in programming: a rationale for 
attention investment models, Proc.  VLHCC, IEEE 
(2002), 2-10. 

[6] Brewer, J.  and Bassoli, A.  Reflections of gender, reflec-
tions on gender: Designing ubiquitous computing tech-
nologies, Gender & Interaction: Real and Virtual Women 
in a Male World, Workshop at AVI, (2006), 9-12. 

[7] Burnett, M., Cook, C.  and Rothermel, G.  End-user soft-
ware engineering.  Comm.  ACM 47, 9 (2004), 53-58. 

[8] Compeau, D.  and Higgins, C.  Application of social cog-
nitive theory to training for computer skills.  Information 
Systems Research, 6(2), (1995a), 118-143. 

[9] Hartzel, K.  How self-efficacy and gender issues affect 
software adoption and use.  Comm.  ACM 46, 9 (2003), 
167-171. 

[10] Jones, M., Brader-Araje, L., Carboni, L., Carter, G., 
Rua, M., Banilower, E. and Hatch, H.  Tool time: Gender 
and students’ use of tools, control, and authority.  Journal 

of Research in Science Teaching 37, 8 (2000), 760-783.   
[11] Kelleher, C.  and Pausch, R.  Stencils-based tutorials: 

Design and evaluation.  In Proc.  CHI, ACM (2005), 541-
550. 

[12] Kelleher, C., Pausch, R., and Kiesler, S.  Storytelling 
Alice motivates middle school girls to learn computer 
programming, In Proc.  CHI, ACM (2007), 1455-1464. 

[13] Kissinger, C., Burnett, M., Stumpf, S., Subrahmaniyan, 
N., Beckwith, L., Yang, S., Rosson, M.  Supporting end 
user debugging: What do users want to know? Advanced 
Visual Interfaces, ACM (2006), 135-142.   

[14] Lorigo, L., Pan, B., Hembrooke, H., Joachims, T., 
Granka, L., Gay, G.  The influence of task and gender on 
search and evaluation behavior using Google, Information 
Processing and Management (2006), 1123-1131.   

[15] Martocchio, J.  and Webster, J.  Effects of feedback and 
playfulness on performance in microcomputer software 
training.  Personnel Psychology 45, (1992), 553-578. 

[16] Meyers-Levy, J.  Gender differences in information 
processing: A selectivity interpretation.  In P.  Cafferata 
& A.  Tybout, (Eds) Cognitive and Affective Responses to 
Advertising.  Lexington, Ma, Lexington Books (1989). 

[17] Rode, J.  A., Toye, E.  F.  and Blackwell, A.  F.  The 
fuzzy felt ethnography - understanding the programming 
patterns of domestic appliances, Personal and Ubiquitous 
Computing 8 (2004), 161-176. 

[18] Rosson, M., Sinha, H., Bhattacharya, M., Zhao, D.  
Design planning in end-user web development, In Proc.  
VLHCC, IEEE (2007), 189-196. 

[19] Rowe, M.  Teaching Science as Continuous Inquiry: A 
Basic (2nd ed.).  McGraw-Hill, New York, NY (1978). 

[20] Subrahmaniyan, N., Kissinger, C., Rector, K., Inman, 
D., Kaplan, J., Beckwith, L, and Burnett, M.  Explaining 
debugging strategies to end-user programmers.  In Proc.  
VLHCC, IEEE (2007), 127-134. 

[21] Subrahmaniyan, N., Beckwith, L., Grigoreanu, V., Bur-
nett, M., Wiedenbeck, S., Narayanan, V., Bucht, K., 
Drummond, R.  and Fern, X.  Testing vs.  code inspection 
vs.  ...  what else? Male and female end users’ debugging 
strategies, In Proc. CHI, ACM (2008), 617-626. 

Appendix A: Additional Details 

Table A1. Means and SDs of features used per 
debugging minute by Control females and 

males, Treatment females and males. 
 CF CM TF TM 

Playful 
Checks 

M=0.082 
SD=0.091 

M=0.20 
SD=0.25 

M=0.17 
SD=0.19 

M=0.15 
SD=0.16 

Playful 
X-marks 

M=0.036S
D=0.062 

M=0.036 
SD=0.084 

M=0.10 
SD=0.18 

M=0.046 
SD=0.054 

Lasting 
Checks 

M=0.51 
SD=0.40 

M=0.76 
SD=0.60 

M=0.46 
SD=0.39 

M=0.66 
SD=0.43 

Lasting 
X-marks 

M=0.047 
SD=0.16 

M=0.040 
SD=0.081 

M=0.069 
SD=0.097 

M=0.059 
SD=0.087 

”Maybe” 
Marks 

na na M=0.32 
SD=0.45 

M=0.15 
SD=0.21 

Value 
Edits 

M=0.29 
SD=0.21 

M=0.41 
SD=0.30 

M=0.18 
SD=0.13 

M=0.36 
SD=0.24 

Arrows M=0.20 
SD=0.31 

M=0.45 
SD=0.81 

M=0.14 
SD=0.19 

M=0.29 
SD=0.55 

Formula 
Edits 

M=0.48 
SD=0.33 

M=0.37 
SD=0.13 

M=0.40 
SD=0.26 

M=0.43 
SD=0.25 

 

156

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 2, 2008 at 17:06 from IEEE Xplore.  Restrictions apply.


